Những câu hỏi liên quan
CH
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
TP
25 tháng 8 2019 lúc 14:57

Lời giải :

Đặt \(\hept{\begin{cases}a+2b+c=x\\a+b+2c=y\\a+b+3c=z\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=-x+5y-3z\\b=x-2y+z\\c=z-y\end{cases}}\)

Thay vào P ta được :

\(P=\frac{-x+5y-3z+3z-3y}{x}+\frac{4x-8y+4z}{y}+\frac{-8z+8y}{z}\)

\(P=-1+\frac{2y}{x}+\frac{4x}{y}-8+\frac{4z}{y}-8+\frac{8y}{z}\)

\(P=-17+\left(\frac{2y}{x}+\frac{4x}{y}\right)+\left(\frac{4z}{y}+\frac{8y}{z}\right)\)

Áp dụng BĐT Cô-si :

\(P\ge-17+2\sqrt{\frac{2y\cdot4x}{x\cdot y}}+2\sqrt{\frac{4z\cdot8y}{x\cdot z}}\)

\(=-17+2\sqrt{8}+2\sqrt{32}\)

\(=-17+12\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{2y}{x}=\frac{4x}{y}\\\frac{4z}{y}=\frac{8y}{z}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x^2=y^2\\z^2=2y^2\end{cases}}\)

Thay a,b,c vào tìm ra dấu "=" nhé. Khá dài và phức tạp đấy.

Bình luận (0)
TP
25 tháng 8 2019 lúc 15:14

Ai ti-ck sai ra đây nói chuyện nào ?

Bình luận (0)
ND
30 tháng 6 2020 lúc 20:38

em ti-ck đúng cho anh rùi nhé!! (^.^)

Bình luận (0)
 Khách vãng lai đã xóa
MD
Xem chi tiết
DH
Xem chi tiết
KN
22 tháng 5 2020 lúc 13:31

Đặt \(x=a+b+2c;y=2a+b+c;z=a+b+3c\left(x,y,z>0\right)\)

Từ đó tính được: \(\hept{\begin{cases}a=z+y-2x\\b=5x-y-3z\\c=z-x\end{cases}}\)

Lúc đó \(A=\frac{4\left(z+y-2x\right)}{x}+\frac{\left(5x-y-3z\right)+3\left(z-x\right)}{y}-\frac{8\left(z-x\right)}{z}\)

\(=\frac{4z+4y}{x}-8+\frac{2x}{y}-1+\frac{8x}{z}-8\)

\(=\left(\frac{4y}{x}+\frac{2x}{y}\right)+\left(\frac{4z}{x}+\frac{8x}{z}\right)-17\)

\(\ge2\sqrt{\frac{4y}{x}.\frac{2x}{y}}+2\sqrt{\frac{4z}{x}.\frac{8x}{z}}-17=12\sqrt{2}-17\)(Theo BĐT Cô - si cho 2 số dương)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{4y}{x}=\frac{2x}{y}\\\frac{4z}{x}=\frac{8x}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\sqrt{2}\\z=x\sqrt{2}=2y\end{cases}}\Leftrightarrow\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}\)

Đặt \(\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}=k\left(k>0\right)\)thì \(\hept{\begin{cases}z=2k\\x=\sqrt{2}k\\y=k\end{cases}}\). Lúc đó \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\)

Vậy \(MinA=12\sqrt{2}-17\), đạt được khi \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\left(k>0\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
Xem chi tiết