Những câu hỏi liên quan
ND
Xem chi tiết
DA
26 tháng 1 2021 lúc 21:17

1+2+3+4+5+6+7+8+9=133456 hi hi

Bình luận (0)
 Khách vãng lai đã xóa
PH
7 tháng 11 2021 lúc 21:41

đào xuân anh sao mày gi sai hả

Bình luận (0)
 Khách vãng lai đã xóa
DC
26 tháng 11 2021 lúc 19:30

???????????????????
 

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
DG
Xem chi tiết
AH
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 3 2017 lúc 15:00

Bình luận (0)
H24
Xem chi tiết
RH
30 tháng 1 2022 lúc 20:58

2n, 2n + 1 và 2n + 2 là 3 số tự nhiên liên tiếp. Mà trong 3 số tự nhiên liên tiếp, luôn tồn tại 1 số chia hết cho 3

--> 2n(2n + 1)(2n + 2) chia hết cho 3 với mọi số tự nhiên n.

Bình luận (0)
TH
30 tháng 1 2022 lúc 21:01

- Khi \(2n\) chia cho 3 thì sẽ có số dư là 0,1,2:

- Xét \(2n=3k\) =>\(2n\left(2n+1\right)\left(2n+2\right)\) ⋮3 (1)

- Xét \(2n=3k+1\) =>\(2n+2=3k+3\) =>\(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 (2)

- Xét \(2n=3k+2\) =>\(2n+1=3k+3\) =>\(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 (3)

- Từ (1),(2),(3) suy ra \(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 với mọi số tự nhiên n.

Bình luận (0)
AD
Xem chi tiết
H24
Xem chi tiết
MS
11 tháng 1 2017 lúc 5:56

mk kobt

mk mới hok lp 5

xin  lỗibn

[​IMG]

Bình luận (0)
DH
11 tháng 1 2017 lúc 6:01

Tao không biết và tao cũng chẳng quan tâm

Bình luận (0)
H24
20 tháng 2 2017 lúc 19:58

mình mới học lớp 5 thôi, thành thật xin lỗi bạn nha

Bình luận (0)
NN
Xem chi tiết
BH
19 tháng 8 2019 lúc 22:21

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

Bình luận (0)
LM
Xem chi tiết
H24
16 tháng 11 2020 lúc 21:08

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

Bình luận (0)
 Khách vãng lai đã xóa