Những câu hỏi liên quan
LV
Xem chi tiết
HL
Xem chi tiết
PN
26 tháng 3 2016 lúc 11:27

Đề sai rồi bạn ơi!

Bình luận (0)
NN
Xem chi tiết
H24
20 tháng 4 2017 lúc 22:01

Hehe

1) Áp dụng hằng bất đẳng thức số 1: (a-b)^2>=0 với mọi a,b

=> a^2- 2ab+ b^2>= 0 với mọi a,b

=> a^2+2ab+ b^2>= 4ab với a,b>0

=> (a+b)^2> 4ab với a,b>0

=> a+b>= \(2\sqrt{ab}\)

Dấu = xảy ra <=> a-b=0 <=> a= b

Cái này là bất đẳng thức cô- si. lớp 8 được học rồi mà :D

2) Chắc thiếu đề :D

Bình luận (0)
RA
Xem chi tiết
NK
Xem chi tiết
KN
Xem chi tiết
KK
11 tháng 3 2017 lúc 9:30

\(\dfrac{a^2}{b+2}+\dfrac{b^2}{c+2}+\dfrac{c^2}{a+2}\ge1\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\dfrac{a^2}{b+2}+\dfrac{b^2}{c+2}+\dfrac{c^2}{a+2}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9}{9}=1\)

Vậy \(\dfrac{a^2}{b+2}+\dfrac{b^2}{c+2}+\dfrac{c^2}{a+2}\ge1\) ( đpcm )

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
H24
30 tháng 11 2019 lúc 19:12

Ta co:

\(\frac{1}{a+b^2}+\frac{1}{a^2+b}=\frac{1}{\frac{a^2}{a}+b^2}+\frac{1}{a^2+\frac{b^2}{b}}\ge\frac{1}{\frac{\left(a+b\right)^2}{a+1}}+\text{ }\frac{1}{\frac{\left(a+b\right)^2}{b+1}}=\frac{a+b+2}{\left(a+b\right)^2}\)

Ta di chung minh:

\(\frac{a+b+2}{\left(a+b\right)^2}\le1\)

Dat \(t=a+b\left(t\ge2\right)\)

BDT can chung minh la:

\(\frac{t+2}{t^2}\le1\)

\(\Leftrightarrow\left(t-2\right)\left(t+1\right)\ge0\left(True\right)\)

Dau '=' xay ra khi \(a=b=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
30 tháng 11 2019 lúc 19:35

Ta có:\(\frac{1}{a+b^2}\le\frac{1}{2b\sqrt{a}}\)( áp dụng bất đẳng thức coossi cho a và b^2 rồi nghịch đảo)

\(\frac{1}{b^2+a}\le\frac{1}{2b\sqrt{a}}\)

Do đó: \(\frac{1}{a+b^2}+\frac{1}{b+a^2}\le\frac{1}{2b\sqrt{a}}+\frac{1}{2a\sqrt{b}}\)

\(=\frac{\sqrt{a}+\sqrt{b}}{2ab}=\frac{\sqrt{a}.1+\sqrt{b}.1}{2ab}\)

\(\le\frac{\frac{a+1}{2}+\frac{b+1}{2}}{2ab}=\frac{a+b+2}{4ab}\)( áp dụng bất đẳng thức cosi cho \(\sqrt{a}.1\)và \(\sqrt{b}.1\))

\(\le\frac{a+b+2}{\left(a+b\right)^2}=\frac{a+b}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)

\(=\frac{1}{a+b}+\frac{2}{\left(a+b\right)^2}\)

\(\le\frac{1}{2}+\frac{2}{4}=1\)( do a+b\(\ge\)2 nên \(\frac{1}{a+b}\le\frac{1}{2}\)và \(\left(a+b\right)^2\ge4\)nên  \(\frac{2}{\left(a+b\right)^2}\le\frac{2}{4}\))

Dấu bằng xảy ra khi và chỉ khi a=b=1

Bình luận (0)
 Khách vãng lai đã xóa