Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HD

cho a,b>0 thỏa mãn a+b=1. chứng minh (a+1/b)^2 + (b+1/a)^2 lớn hơn hoặc bằng 25/2

ZZ
21 tháng 2 2020 lúc 20:03

\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)

\(\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\)

\(\ge\frac{\left(a+b+\frac{4}{a+b}\right)^2}{2}\)

\(=\frac{25}{2}\) 

tại a=b=1/2

Bình luận (0)
 Khách vãng lai đã xóa
LC
21 tháng 2 2020 lúc 21:57

thêm ít cách

Cách 1:

Áp dụng BĐT bunhiacopxki ta được:

\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]\left(1^2+1^2\right)\ge\left[\left(a+\frac{1}{b}\right)+\left(b+\frac{1}{a}\right)\right]^2\)

\(\Leftrightarrow\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge\left(1+\frac{1}{a}+\frac{1}{b}\right)^2\)(1)

Ta có:\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)( tự CM nha )

ÁP dụng BĐT AM-GM ta có:

\(\sqrt{ab}\le\frac{a+b}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge4\)(2)

Thay (2) vào (1) ta được: 

\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge25\)

\(\Rightarrow\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{25}{2}\left(đpcm\right)\)

Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

Cách 2: 

Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)

Ta có: \(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\)

\(=a^2+\frac{2a}{b}+\frac{1}{16b^2}+\frac{15}{16b^2}+b^2+\frac{2b}{a}+\frac{1}{16a^2}+\frac{15}{16a^2}\)

\(=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\left(\frac{2a}{b}+\frac{2b}{a}\right)+\left(\frac{15}{16b^2}+\frac{15}{16a^2}\right)\)

ÁP dụng BĐT AM-GM ta có:

\(a^2+\frac{1}{16a^2}\ge2\sqrt{a^2.\frac{1}{16a^2}}\ge\frac{1}{2}\)(3)

\(b^2+\frac{1}{16b^2}\ge2\sqrt{b^2.\frac{1}{16b^2}}\ge\frac{1}{2}\)(4)

\(\frac{2a}{b}+\frac{2b}{a}\ge2\sqrt{\frac{2a}{b}.\frac{2b}{a}}\ge4\)(5)

\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge2\sqrt{\frac{15.15}{16.16a^2b^2}}=\frac{15}{8ab}\)(1) 

ÁP dụng BĐT AM-GM ta có:

\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)(2)

Thay (2) vào (1) ta được:

\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge\frac{15}{2}\)(6)

Cộng (3)+(4)+(5)+(6) ta được: 

\(P\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{2}+4=\frac{25}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

Cách 3:Làm tắt thui ạ

Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)

\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\ge2ab+\frac{2}{ab}+4\)

\(P\ge2\left(ab+\frac{1}{ab}\right)+4\)

\(P\ge2\left(ab+\frac{1}{16ab}+\frac{15}{16ab}\right)+4\)

giống cách 2 rồi làm nốt

Bình luận (0)
 Khách vãng lai đã xóa
LD
11 tháng 2 2021 lúc 16:32

ÁP DỤNG BẤT ĐẲNG THỨC BUNYAKOVSKY DẠNG PHÂN THỨC TA CÓ : 

\(\left(A+\frac{1}{B}\right)^2+\left(B+\frac{1}{A}\right)^2\ge\frac{\left(A+\frac{1}{B}+B+\frac{1}{A}\right)^2}{2}=\frac{\left(1+\frac{1}{A}+\frac{1}{B}\right)^2}{2}\)(1)

LẠI CÓ \(\frac{1}{A}+\frac{1}{B}\ge\frac{4}{A+B}=\frac{4}{1}=4\)(2)

TỪ (1) VÀ (2) => \(\left(A+\frac{1}{B}\right)^2+\left(B+\frac{1}{A}\right)^2\ge\frac{\left(1+\frac{1}{A}+\frac{1}{B}\right)^2}{2}\ge\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

=> \(\left(A+\frac{1}{B}\right)^2+\left(B+\frac{1}{A}\right)^2\ge\frac{25}{2}\)(ĐPCM)

ĐẲNG THỨC XẢY RA <=> A = B = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
_ Ta có :
(a+1a)2+(b+1b)2=(a2+b2)+(1a2+1b2)+4(a+1a)2+(b+1b)2=(a2+b2)+(1a2+1b2)+4
_ Bằng biến đổi tương đương, ta có :
2(a2+b2)≥(a+b)2⇔a2+b2≥122(a2+b2)≥(a+b)2⇔a2+b2≥12
_ Áp dụng Bất đẳng thức CauchyCauchy, ta có :
a+b≥2√ab⇔√ab≤12⇔a2b2≤116⇔1a2b2≥16⇔a2+b2a2b2≥12.16=8a+b≥2ab⇔ab≤12⇔a2b2≤116⇔1a2b2≥16⇔a2+b2a2b2≥12.16=8
_ Nên :
VT≥12+8+4=252=VP(đpcm)VT≥12+8+4=252=VP(đpcm)
_ Dấu "=" khi : a=b=12 
Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LV
Xem chi tiết
HL
Xem chi tiết
NK
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AN
Xem chi tiết
HN
Xem chi tiết
DL
Xem chi tiết