Những câu hỏi liên quan
HC
Xem chi tiết
HL
23 tháng 1 2019 lúc 16:58

(x-1)(x-3) >0 
<=> x^2-4x+3>0 
<=>x^2-2x2+4-1>0 
<=>(x-2)^2>1 
<=>x-2>1 
<=>x>3 

Bình luận (0)
HL
23 tháng 1 2019 lúc 16:58

(x-1)(x-3)>0 khi: 
TH1: x-1>0 và x-3>0 <=>x>1 và x>3 =>x>3 (vì x>3 thì chắc chắn sẽ lớn hơn 1) 
TH2: x-1<0 và x-3<0 <=>x<1 và x<3 =>x<1 (vì x<1 thì chắc chắn sẽ bé hơn 3) 
Vậy x>3 hoặc x<1 thì (x-1)(x-3)>0 

Bình luận (0)
HL
23 tháng 1 2019 lúc 16:59

2 cách làm

Bình luận (0)
TL
Xem chi tiết
GC
26 tháng 11 2017 lúc 20:41

Gọi d là ước chung của n+3 và 2n+5

Ta có : n+3 chia hết cho d

Suy ra (2n+6) - ( 2n+5) chia hết cho d => 1 chia hết cho d.

Vây d = 1

Bình luận (0)
TL
26 tháng 11 2017 lúc 20:48

Bạn ơi cho mk hỏi bạn lấy 2n+6 ở đâu? 

Bình luận (0)
LP
Xem chi tiết
LT
Xem chi tiết
NT
22 tháng 10 2017 lúc 21:24

M=4(x+y)+21xy(x+y)+7x2y2(x+y)+2014

M=4.0+21xy.0+7x2y2.0+2014

M=0+0+0+2014=2014

nhớ

ko cho ko đâu

Bình luận (0)
NT
Xem chi tiết
B1
26 tháng 8 2017 lúc 20:28

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

Bình luận (0)
AN
28 tháng 8 2017 lúc 14:17

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Bình luận (0)
AN
28 tháng 8 2017 lúc 14:21

2/ \(x+\sqrt{5-x^2}+x\sqrt{5-x^2}=5\)

Đặt \(\sqrt{5-x^2}=a\ge0\) thì ta có hệ

\(\hept{\begin{cases}x+a+ax=5\\a^2+x^2=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+a+ax=5\\\left(a+x\right)^2-2ax=5\end{cases}}\)

Tới đây thì đơn giản rồi. Đặt \(\hept{\begin{cases}a+x=S\\ax=P\end{cases}}\) giải tiếp sẽ ra

Bình luận (0)
NL
Xem chi tiết
IS
25 tháng 3 2020 lúc 22:28

mình giải cho bạn 3 cách nhá . thấy cái nào đc thì làm

cách 1 ) 

ĐK \(\left|x\right|\ge\frac{1}{\sqrt{2}}\)

Phương trình \(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)

\(\Leftrightarrow4\left(2x^2-1\right)-2\left(3x+1\right)\sqrt{2x^2-1}+2x^2+3x-2=0\)

đặt \(\sqrt{2x^2-1}=t\left(t\ge0\right)\)ta được \(4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)

ta có \(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=x^2-6x+9=\left(x-3\right)^2\)

nên phương trình \(\Leftrightarrow\orbr{\begin{cases}t=\frac{3x+1-x+3}{4}\\t=\frac{3x+1+x-3}{4}\end{cases}=>\orbr{\begin{cases}t=\frac{x+2}{2}\\t=\frac{2x-1}{2}\end{cases}}}\)

zơi \(t=\frac{x+2}{2}\)thì \(\sqrt{2x^2-1}=\frac{x+2}{2}\Leftrightarrow\hept{\begin{cases}x\ge-2\\4\left(2x^2-1\right)=\left(x+2\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\7x^2-4x-8=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-2\\x=\frac{2\pm\sqrt{60}}{7}\end{cases}\Leftrightarrow x=\frac{2\pm\sqrt{60}}{7}}\)

zới \(t=\frac{2x-1}{2}\)thì \(\sqrt{2x^2-1}=\frac{2x-1}{2}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\4\left(2x^2-1\right)=\left(2x-1\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\4x^2+4x-5=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x=\frac{-1\pm\sqrt{6}}{2}\end{cases}\Leftrightarrow x=\frac{-1\pm\sqrt{6}}{2}}\)

kết hợp điều kiện \(\left|x\right|\ge\frac{1}{\sqrt{2}}\)ta đc nghiệm của phương trình là \(\left\{\frac{2\pm\sqrt{60}}{7};\frac{-1\pm\sqrt{6}}{2}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
IS
25 tháng 3 2020 lúc 22:34

cách 2 )

điều kiện như thế nhé

Phương trình \(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)

Bình phương hai zế phương trình ta có

\(\Leftrightarrow\left[2\left(3x+1\right)\sqrt{2x^{2-1}}\right]=\left(10x^2+3x-6\right)^2\Leftrightarrow\left(7x^2-4x-8\right)\left(4x^2+4x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}7x^2-4x-8=0\\4x^2+4x-5=0\end{cases}}\)

giải phương trình \(7x^2-4x-8=0=>\orbr{\begin{cases}x=\frac{2+\sqrt{60}}{7}\\x=\frac{2-\sqrt{60}}{7}\end{cases}}\)

giải phương trình \(4x^2+4x-5=0=>\orbr{\begin{cases}x=\frac{-1+\sqrt{6}}{2}\\x=\frac{-1-\sqrt{6}}{2}\end{cases}}\)

kết luận nhưu cách 1

Bình luận (0)
 Khách vãng lai đã xóa
IS
25 tháng 3 2020 lúc 22:44

cách 3 ( cuối cùng r)

điều kiện như thế

PT\(\Leftrightarrow\left[2\sqrt{2x^2-1}-\left(2x-1\right)\right]\left[2\sqrt{2x^2-1}-\left(x+2\right)\right]=0\)

=>\(\orbr{\begin{cases}2\sqrt{2x^2-1}-\left(2x-1\right)=0\\2\sqrt{2x^2-1}-\left(x+2\right)=0\end{cases}}\)

gải phương trình \(2\sqrt{2x^2-1}-\left(2x-1\right)=0\Leftrightarrow\sqrt{2x^2-1}=\frac{2x-1}{2}\hept{\begin{cases}x\ge\frac{1}{2}\\4\left(2x^2-1\right)=\left(2x-1\right)^2\end{cases}}\)

=>\(\hept{\begin{cases}x\ge\frac{1}{2}\\4x^2+4x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x=\frac{-1\pm\sqrt{6}}{2}\end{cases}=>x=\frac{-1\pm\sqrt{6}}{2}}}\)

giải phương trình \(2\sqrt{2x^2-1}-\left(2x-1\right)=0\)

\(\Leftrightarrow\sqrt{2x^2-1}=\frac{x+2}{2}\Leftrightarrow\hept{\begin{cases}x\ge-2\\4\left(2x^2-1\right)=\left(x+2\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\7x^2-4x-8=0\end{cases}}}\)

=>\(\hept{\begin{cases}x\ge-2\\x=\frac{2\pm\sqrt{60}}{7}\end{cases}=>x=\frac{2+\sqrt{60}}{7}}\)

kết luận nhưu 2 cách trên

mệt quá đi OLM ơi , hút máu em

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
6 tháng 8 2021 lúc 10:39

a, \(2\sqrt{3}-\sqrt{4+x^2}=0\Leftrightarrow\sqrt{4+x^2}=2\sqrt{3}\)

\(\Leftrightarrow x^2+4=12\Leftrightarrow x^2=8\Leftrightarrow x=\pm2\sqrt{2}\)

b, \(\sqrt{16x+16}-\sqrt{9x+9}=0\)ĐK : x >= -1 

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=0\Leftrightarrow\sqrt{x+1}=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

c, \(\sqrt{4\left(x+2\right)^2}=8\Leftrightarrow2\left|x+2\right|=8\Leftrightarrow\left|x+2\right|=4\)

TH1 : \(x+2=4\Leftrightarrow x=2\)

TH2 : \(x+2=-4\Leftrightarrow x=-6\)

Bình luận (0)
NT
6 tháng 8 2021 lúc 11:21

c: Ta có: \(\sqrt{4\left(x+2\right)^2}=8\)

\(\Leftrightarrow\left|x+2\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)

Bình luận (0)
NN
Xem chi tiết
KL
31 tháng 1 2018 lúc 16:56

Ta có x + y = x.y

=> x + y - x.y = 0

=> x + y(1 - x) = 0

=> x - y(x - 1) = 0

=> (x - 1) - y(x - 1) = -1

=> (x - 1) . (1 - y) = -1

=> x - 1 và 1 - y là ước của -1 = {1;-1}

Nếu x - 1 = 1; 1 - y = -1 =>  x = 2 ; y = 2

Nếu x - 1 = -1; 1 - y = 1 => x = 0; y = 0

Bình luận (0)
DQ
Xem chi tiết
ST
3 tháng 7 2018 lúc 20:42

a, \(S=7+7^3+...+7^{1999}\)

=>\(7^2S=7^3+7^5+...+7^{2001}\)

=>\(49S-S=\left(7^3+7^5+...+7^{2001}\right)-\left(7+7^3+...+7^{1999}\right)\)

=>\(48S=7^{2001}-7\)

=>\(S=\frac{7^{2001}-7}{48}\)

b, đề thiếu

Bình luận (0)
DQ
3 tháng 7 2018 lúc 20:44

Thiếu hả bn đề này cô giáo mk cho đó

Bình luận (0)
ST
3 tháng 7 2018 lúc 20:46

đề hỏi gì bạn

Bình luận (0)