Những câu hỏi liên quan
LP
Xem chi tiết
DA
Xem chi tiết
MY
Xem chi tiết
NL
26 tháng 7 2021 lúc 14:51

\(x^4-1-2\left(m+1\right)x^2+2\left(m+1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2\left(m+1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-2m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=2m+1\end{matrix}\right.\)

Pt có 4 nghiệm pb khi: \(\left\{{}\begin{matrix}2m+1>0\\2m+1\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)

Do \(x=\pm1< 3\) nên để  \(x_1< x_2< x_3< x_4< 3\) thì:

\(\sqrt{2m+1}< 3\Leftrightarrow m< 4\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}< m< 4\\m\ne0\end{matrix}\right.\)

b. \(\left\{{}\begin{matrix}x_1-x_3=x_3-x_2\\x_1-x_3=x_2-x_1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-x_2\\x_1-x_3=-x_1-x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=-x_1\\x_3=3x_1\end{matrix}\right.\)

Do vai trò \(x_1;x_2\) như nhau, giả sử \(x_1< 0\) \(\Rightarrow x_1;x_3\) là 2 nghiệm âm

TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=1\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}x_3=-\sqrt{2m+1}\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-\sqrt{2m+1}=-3\Rightarrow m=4\)

TH2: \(x_1=-\sqrt{2m+1}\Rightarrow\left\{{}\begin{matrix}x_3=-1\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-1=-3\sqrt{2m+1}\) \(\Rightarrow m=-\dfrac{4}{9}\)

Bình luận (2)
PT
Xem chi tiết
DY
Xem chi tiết
NL
11 tháng 9 2021 lúc 21:28

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 5 2021 lúc 21:40

Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot1\cdot\left(m^2-2\right)\)

\(=4m^2-4m+1-4m^2+8\)

\(=-4m+9\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow-4m+9>0\)

\(\Leftrightarrow-4m>-9\)

hay \(m< \dfrac{9}{4}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1\cdot x_2=m^2-2\end{matrix}\right.\)

Ta có: \(\left|x_1-x_2\right|=\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)

\(\Leftrightarrow\left(2m-1\right)^2-4\cdot\left(m^2-2\right)=5\)

\(\Leftrightarrow4m^2-4m+1-4m^2+8=5\)

\(\Leftrightarrow-4m=-4\)

hay m=1(thỏa ĐK)

Vậy: m=1

Bình luận (0)
H24
13 tháng 5 2021 lúc 21:38

PT có 2 nghiệm phân biệt

`<=>Delta>0`

`<=>(2m-1)^2-4(m^2-2)>0`

`<=>4m^2-4m+1-4m^2+8>0`

`<=>-4m+9>0`

`<=>m<9/4`

Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`

`|x_1-x_2|=\sqrt5`

`<=>(x_1-x_2)^2=5`

`<=>(x_1+x_2)^2-4(x_1.x_2)=5`

`<=>4m^2-4m+1-4m^2+8=5`

`<=>-4m+8=5`

`<=>4m=3`

`<=>m=3/4(tm)`

Vậy `m=3/4=>|x_1-x_2|=\sqrt5`

Bình luận (0)
H24
13 tháng 5 2021 lúc 21:41

PT có 2 nghiệm phân biệt

`<=>Delta>0`

`<=>(2m-1)^2-4(m^2-2)>0`

`<=>4m^2-4m+1-4m^2+8>0`

`<=>-4m+9>0`

`<=>m<9/4`

Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`

`|x_1-x_2|=\sqrt5`

`<=>(x_1-x_2)^2=5`

`<=>(x_1+x_2)^2-4(x_1.x_2)=5`

`<=>4m^2-4m+1-4m^2+8=5`

`<=>-4m+9=5`

`<=>4m=4`

`<=>m=1(tm)`

Vậy `m=1=>|x_1-x_2|=\sqrt5`

Bình luận (0)
DV
Xem chi tiết
AH
30 tháng 8 2019 lúc 12:33

Lời giải:

Đặt $x^2=t$ thì PT ban đầu trở thành: \(t^2-2mt+4=0(*)\)

\(\Delta'_{(*)}=m^2-4\)

a)

Để PT ban đầu vô nghiệm thì PT $(*)$ vô nghiệm hoặc có 2 nghiệm âm

PT $(*)$ vô nghiệm \(\Leftrightarrow \Delta'_{(*)}=m^2-4< 0\Leftrightarrow -2< m< 2\)

PT $(*)$ có nghiệm âm: \(\Leftrightarrow \left\{\begin{matrix} \Delta'_{(*)}=m^2-4>0\\ t_1+t_2=2m< 0\\ t_1t_2=4>0\end{matrix}\right.\Leftrightarrow m< -2\)

Vậy $m\in (-2;2)$ hoặc $m\in (-\infty; -2)$

b)

Để PT ban đầu có 1 nghiệm thì PT $(*)$ có duy nhất nghiệm $t=0$ hoặc có 1 nghiệm $t=0$ và nghiệm còn lại âm.

Mà $0^2-2.m.0+4=4\neq 0$ với mọi $m$ nên PT $(*)$ không thể có nghiệm $t=0$. Kéo theo không tồn tại $m$ để PT ban đầu có nghiệm duy nhất.

c) Để PT ban đầu có 2 nghiệm thì PT $(*)$ có 1 nghiệm dương, 1 nghiệm âm (2 nghiệm trái dấu)

\(\Leftrightarrow \left\{\begin{matrix} \Delta'_{(*)}=m^2-4>0\\ t_1t_2=4< 0\end{matrix}\right.\) (vô lý)

Do đó không tồn tại $m$ để PT ban đầu có 2 nghiệm

d)

Để PT ban đầu có 3 nghiệm thì PT $(*)$ phải có 2 nghiệm: $1$ nghiệm dương và một nghiệm $t=0$. Như phần b ta đã chỉ ra $(*)$ không thể có nghiệm $t=0$. Do đó không tồn tại $m$ để PT ban đầu có 3 nghiệm.

e)

Để PT ban đầu có 4 nghiệm phân biệt thì $(*)$ phải có 2 nghiệm dương phân biệt

\(\Leftrightarrow \left\{\begin{matrix} \Delta'_{(*)}=m^2-4>0\\ t_1+t_2=2m>0\\ t_1t_2=4>0\end{matrix}\right.\Leftrightarrow m>2\)

PT ban đầu có 4 nghiệm \(x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_3=-\sqrt{t_2}\)

Để \(x_1^4+x_2^4+x_3^4+x_4^4=32\)

\(\Leftrightarrow 2t_1^2+2t_2^2=32\Leftrightarrow t_1^2+t_2^2=16\)

\(\Leftrightarrow (t_1+t_2)^2-2t_1t_2=16\Leftrightarrow 4m^2-2.4=16\)

\(\Leftrightarrow m^2=6\Rightarrow m=\sqrt{6}\) (do $m>2$)

Vậy.........

Bình luận (0)
HH
Xem chi tiết
HV
14 tháng 4 2018 lúc 21:42

a, Đặt x2=t(t≥0)x2=t(t≥0)

x4−2mx2+2m−1=0x4−2mx2+2m−1=0

⟺t2−2mt+2m−1=0⟺t2−2mt+2m−1=0 (**)

Để phương trình có 4 nghiệm phân biệt thì Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1 (1)

{t1t2=2m−1>0t1+t2=2m>0 (∗){t1t2=2m−1>0t1+t2=2m>0 (∗)

⟺m>12⟺m>12 (2)

Phương trình bậc 4 trùng phương thì có 4 nghiệm trong đó có 2 cặp nghiệm là số đối của nhau.

x1<x2<x3<x4→{x1=−x4x2=−x3x1<x2<x3<x4→{x1=−x4x2=−x3

x4−x3=x3−x2→x4=3x3x4−x3=x3−x2→x4=3x3

TT: x1=3x2x1=3x2

→x1.x4=9x2.x3→t1=9t2→x1.x4=9x2.x3→t1=9t2 ( với t1;t2t1;t2 là 2 nghiệm của pt(**))

Đến đây thay vào (*) bên trên ta được hệ:

⟺{9t22=2m−15t2=m⟺{9t22=2m−15t2=m

→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0

⟺m=59⟺m=59 v m=5m=5 (cả 2 đều thỏa mãn)

∙∙ Với m=59⟺x=±1m=59⟺x=±1 v x=±13x=±13

∙∙ Với m=5⟺x=±1m=5⟺x=±1 v x=±3

Bình luận (0)
CS
Xem chi tiết
TL
29 tháng 5 2021 lúc 20:52

a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`

`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.

b) Viet: `x_1+x_2=-2m+4`

`x_1x_2=m^2-4m`

`3/(x_1) + x_2=3/(x_2)+x_1`

`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`

`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`

`<=>(x_1-x_2).(3+x_1x_2)=0`

`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`

`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`

`<=>  4.(3+m^2-4m)=0`

`<=> m^2-4m+3=0`

`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy `m \in {1;3}`.

Bình luận (0)
N0
Xem chi tiết