Rút gọn \(P=\frac{\sqrt{x}+1}{4-x}:\frac{1}{2\sqrt{x}-x}+\frac{1}{2-\sqrt{x}}\) (x>0 , x khác 4)
Rút gọn \(P=\left(\frac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\frac{x}{x-2\sqrt{x}}\right):\frac{1-\sqrt{x}}{2-\sqrt{x}}\) (x > 0 ; x khác 1 ; x khác 4
Trả lời:
\(P=\left(\frac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\frac{x}{x-2\sqrt{x}}\right)\div\frac{1-\sqrt{x}}{2-\sqrt{x}}\left(ĐK:x>0,x\ne1,x\ne4\right)\)
\(P=\left[\frac{x-\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+1\right)}-\frac{x}{\sqrt{x}.\left(\sqrt{x}-2\right)}\right]\div\frac{-\left(\sqrt{x}-1\right)}{-\left(\sqrt{x}-2\right)}\)
\(P=\left[\frac{x-\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\sqrt{x}-2}\right]\div\frac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(P=\left[\frac{x-\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+1\right)}\right]\times\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(P=\left[\frac{x-\sqrt{x}+2-x-\sqrt{x}}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+1\right)}\right]\times\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(P=\left[\frac{-2\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+1\right)}\right]\times\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(P=\frac{-2.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+1\right)}\times\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(P=\frac{-2}{\sqrt{x}+1}\)
Vậy \(P=\frac{-2}{\sqrt{x}+1}\)với \(x>0,x\ne1,x\ne4\)
Cho biểu thức A=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)và B= \(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}-\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\) 9x>/ 0 , x khác 4 , x khác 9 )
a) Rút gọn A và tính A khi x = 1
b) Rút gọn B
Rút gọn các biểu thức:
a, \(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
b, \(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\)(với x>0, x khác 4)
Rút gọn biểu thức \(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{\sqrt{x}-10}{x-4}\) (x>=0, x khác 4)
giúp mik giải vs
\(=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+\left(\sqrt{x}-10\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+x-2\sqrt{x}-\sqrt{x}+2+\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{2x-8}{x-4}\)
\(=\frac{2\left(x-4\right)}{x-4}\)
\(=2\)
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.
cho A = \(\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)ĐK: X>0 , X khác 4
a, rút gọn A
b, tìm x để A bằng -1
c, tìm A bt x bằng 36
các bn ơi đoạn sau mik viết nhầm đấy bỏ phần không có ngặc đi nha
cho A = \(\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\) ĐK: X>0 , X khác 4
a, rút gọn A
b, tìm x để A bằng -1
c, tìm A bt x bằng 36
a) \(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(\Leftrightarrow A=\frac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{-4x-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow A=\frac{-4\sqrt{x}}{\sqrt{x}-2}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}\)
\(\Leftrightarrow A=\frac{4x}{\sqrt{x}-3}\)
b) Để \(A=-1\)
\(\Leftrightarrow\frac{4x}{\sqrt{x}-3}=-1\)
\(\Leftrightarrow4x=3-\sqrt{x}\)
\(\Leftrightarrow4x+\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(4\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\4\sqrt{x}-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(ktm\right)\\\sqrt{x}=\frac{3}{4}\Leftrightarrow x=\frac{9}{16}\left(tm\right)\end{cases}}\)
Vậy để \(A=-1\Leftrightarrow x=\frac{9}{16}\)
c) Khi \(x=36\)
\(\Leftrightarrow A=\frac{4\cdot36}{\sqrt{36}-3}=\frac{144}{3}=48\)
a) \(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{\left(x-2\sqrt{x}\right)}-\frac{2}{\sqrt{x}}\right)\)
\(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
\(A=\left(\frac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(x-2\right)}\right):\left(\frac{\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(\frac{-8\sqrt{x}-4x}{\left(\sqrt{x}+2\right)\sqrt{x}}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(\frac{-4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\sqrt{x}}\right).\left(\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\right)\)
\(A=\frac{-4\sqrt{x}\left(2-\sqrt{x}\right).\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}\)
\(A=\frac{-4\sqrt{x}\left(2-\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}\)
.......... Đến đây bạn tự nhân đa thức với đa thức xog rút gọn nha.
Cho biểu thức: \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) Với x>0;x#1;x#4
a,Rút gọn P
b,Với giá trị nào của x thì P=\(\frac{1}{4}\)
c,Tính giá trị của P tại x=\(4+2\sqrt{3}\)
a: \(P=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\)
\(=\dfrac{1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-2}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b: P=1/4
=>\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\)
=>\(4\left(\sqrt{x}-2\right)=3\sqrt{x}\)
=>\(4\sqrt{x}-8-3\sqrt{x}=0\)
=>\(\sqrt{x}=8\)
=>x=64
c: Khi \(x=4+2\sqrt{3}\) thì \(P=\dfrac{\sqrt{4+2\sqrt{3}}-2}{3\cdot\sqrt{4+2\sqrt{3}}}\)
\(=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{2-\sqrt{3}}{3}\)
Câu 2 cho biểu thức P = \(\left(1-\frac{5\sqrt{x}+5}{x-1}\right):\left(\frac{x+\sqrt{x}}{x-1}-\frac{2\sqrt{x}-2}{x-2\sqrt{x}+1}\right)\) với x >0 x bằng khác 1 x = khác 4
a) rút gọn P
b) tìm x để P >1
\(A=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{2\sqrt{x}}{\sqrt{x}-2}-\frac{3x+4}{x-4}\) với \(x\ge 0\);x#4
a,Rút gọn A
b,Tìm giá trị của x để A=\(\frac{1}{2}\)
a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\)
\(=\dfrac{2\sqrt{x}-4}{x-4}=\dfrac{2}{\sqrt{x}+2}\)
b: A=1/2
=>\(\sqrt{x}+2=4\)
=>\(\sqrt{x}=2\)
=>x=4(loại)