B=1+5+52+...+57+58 chia hết cho 31
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng tỏ rằng B=1+5+52+...+57+58 chia hết cho 31.giúp em để em Ôn thi ạ
\(B=\left(1+5+5^2\right)+...+5^6\left(1+5+5^2\right)=31\left(1+...+5^6\right)⋮31\)
Chứng minh: B = 31 + 32 + 33 + 34 + … + 22010 chia hết cho 4 và 13.
Chứng minh: C = 51 + 52 + 53 + 54 + … + 52010 chia hết cho 6 và 31.
Chứng minh: D = 71 + 72 + 73 + 74 + … + 72010 chia hết cho 8 và 57.
a: \(B=3^1+3^2+...+3^{2010}\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)
\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2008}\right)⋮13\)
b: \(C=5^1+5^2+...+5^{2010}\)
\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+...+5^{2009}\right)⋮6\)
\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)
\(=31\left(5+...+5^{2008}\right)⋮31\)
c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)
\(=8\left(7+...+7^{2009}\right)⋮8\)
\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{2008}\right)⋮57\)
Bài 1. Tính hợp lý
1) (–12) +6.(–3)
2) (36 -2020) + (2019 -136) – 27
3) (144 – 97) – (244 – 197)
4) (–24).13 – 24.( –3)
5) 54+55+56+57+58-(64+65+66+67+68)
6) 24(16 – 5) – 16(24 – 5)
7) 47.(23 + 50) – 23.(47 + 50)
8) (-31). 47 + (-31). 52 + (-31)
Bài 2: Tìm số nguyên x, biết:
1)-17-(2x-5)=-6
2) 10-2(4-3x)=-4
3)-12+3(-x+7)=-18
4)-45:[5.(-3-2x)]=3
5) x.(x+3)=0
6) (x-2).(x+4)=0
7) x.(x+1).(x-3)=0
Bài 1:
1) Ta có: \(\left(-12\right)+6\cdot\left(-3\right)\)
\(=-12-18\)
=-30
2) Ta có: \(\left(36-2020\right)+\left(2019-136\right)-27\)
\(=36-2020+2019-136-27\)
\(=1-100-27\)
\(=-126\)
3) Ta có: \(\left(144-97\right)-\left(244-197\right)\)
\(=144-97-244+197\)
\(=-100+100=0\)
4) Ta có: \(\left(-24\right)\cdot13-24\cdot\left(-3\right)\)
\(=-24\cdot13+24\cdot3\)
\(=24\cdot\left(-13+3\right)\)
\(=24\cdot\left(-10\right)=-240\)
5) Ta có: \(54+55+56+57+58-\left(64+65+66+67+68\right)\)
\(=54+55+56+57+58-64-65-66-67-68\)
\(=\left(54-64\right)+\left(55-65\right)+\left(56-66\right)+\left(57-67\right)+\left(58-68\right)\)
\(=\left(-10\right)+\left(-10\right)+\left(-10\right)+\left(-10\right)+\left(-10\right)\)
=-50
6) Ta có: \(24\cdot\left(16-5\right)-16\cdot\left(24-5\right)\)
\(=24\cdot16-24\cdot5-16\cdot24+16\cdot5\)
\(=-24\cdot5+16\cdot5\)
\(=5\cdot\left(-24+16\right)\)
\(=-5\cdot8=-40\)
7) Ta có: \(47\cdot\left(23+50\right)-23\cdot\left(47+50\right)\)
\(=47\cdot23+47\cdot50-23\cdot47-23\cdot50\)
\(=47\cdot50-23\cdot50\)
\(=50\cdot\left(47-23\right)\)
\(=50\cdot24=1200\)
8) Ta có: \(\left(-31\right)\cdot47+\left(-31\right)\cdot52+\left(-31\right)\)
\(=-31\cdot\left(47+52+1\right)\)
\(=-31\cdot100=-3100\)
Bài 2:
1) Ta có: \(-17-\left(2x-5\right)=-6\)
\(\Leftrightarrow-17-2x+5+6=0\)
\(\Leftrightarrow-2x-6=0\)
\(\Leftrightarrow-2x=6\)
hay x=-3
Vậy: x=-3
2) Ta có: \(10-2\left(4-3x\right)=-4\)
\(\Leftrightarrow10-8+6x+4=0\)
\(\Leftrightarrow6x+6=0\)
\(\Leftrightarrow6x=-6\)
hay x=-1
Vậy: x=-1
3) Ta có: \(-12+3\left(-x+7\right)=-18\)
\(\Leftrightarrow-12-3x+21+18=0\)
\(\Leftrightarrow-3x+27=0\)
\(\Leftrightarrow-3x=-27\)
hay x=9
Vậy: x=9
4) Ta có: \(-45:\left[5\cdot\left(-3-2x\right)\right]=3\)
\(\Leftrightarrow5\cdot\left(-3-2x\right)=-15\)
\(\Leftrightarrow-2x-3=-3\)
\(\Leftrightarrow-2x=0\)
hay x=0
Vậy: x=0
5) Ta có: x(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-3\right\}\)
6) Ta có: (x-2)(x+4)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-4\right\}\)
7) Ta có: \(x\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=3\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-1;3\right\}\)
Bài 1:
1) Ta có: (−12)+6⋅(−3)(−12)+6⋅(−3)
=−12−18=−12−18
=-30
2) Ta có: (36−2020)+(2019−136)−27(36−2020)+(2019−136)−27
=36−2020+2019−136−27=36−2020+2019−136−27
=1−100−27=1−100−27
=−126
Tớ chcs cậu học thật giỏi nha !
Cho B= 5+52+53+...589 +590. Chứng tỏ rằng B chia hết cho 31
\(B=5+5^2+5^3+...+5^{88}+5^{89}+5^{90}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{88}+5^{89}+5^{90}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{88}\left(1+5+5^2\right)\)
\(=31\left(5+5^4+...+5^{88}\right)⋮31\)
a) Chứng minh: B = 31 + 32 + 33 + 34 + … + 32010 chia hết cho 4.
b) Chứng minh: C = 51 + 52 + 53 + 54 + … + 52010 chia hết cho 31.
c) Cho S=17+52+53+54+ ... +52010 . Tìm số dư khi chia S cho 31.
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
CMR:
a) 14^14 -1 chia hết cho 3
b) 2009^2009-1 chia hết cho 2008
c) A= 2+ 2^2+...+2^60 chia hết cho 21 và 15
d) B= 5 + 5^2+...+5^12 chia hết cho 30 và 31
e) C= 1+3+3^2+...+3^11 chia hết cho 52
Chứng tỏ rằng 1+ 5 + 52 + 53 +... + 5402 + 5403 + 5404 chia hết cho 31
Đặt \(A=1+5+5^2+5^3+...+5^{402}+5^{403}+5^{404}\)
\(\Rightarrow A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{399}+5^{400}+5^{401}\right)+\left(5^{402}+5^{403}+5^{404}\right)\)
\(\Rightarrow A=31.1+31.5^3+...+31.5^{402}\)
\(\Rightarrow A=31\left(1+5^3+5^6+...+5^{402}\right)\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
Chứng tỏ rằng:
1+5+52+53+......+5402+5403+4404
chia hết cho 31?
\(\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{402}+5^{403}+5^{404}\right)\\ =31+5^3.\left(1+5+5^2\right)+...+5^{402}.\left(1+5+5^2\right)\\ =31+5^3.31+...+5^{402}.31\\ =31.\left(1+5^3+...+5^{402}\right)⋮31\left(DPCM\right)\)
Chứng minh rằng C = 5 + 5 2 + 5 3 + ... + 5 8 chia hết cho 30
Sơ đồ con đường |
Lời giải chi tiết |
|
Ta có: C = 5 + 5 2 + 5 3 + ... + 5 8 = 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + 5 7 + 5 8 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 .30 + 5 4 .30 + 5 6 .30 = 30. 1 + 5 2 + 5 4 + 5 6 Áp dụng tính chất chia hết của một tích ta có: 30 ⋮ 30 ⇒ 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 ⇒ C = 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 |