Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TN
Xem chi tiết
NL
4 tháng 2 2021 lúc 22:45

1.

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)

2.

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)

Không tồn tại m thỏa mãn

Bình luận (3)
PB
Xem chi tiết
CT
3 tháng 10 2017 lúc 15:38

Bình luận (0)
NQ
Xem chi tiết
TN
Xem chi tiết
LK
29 tháng 3 2022 lúc 13:50

a) 2x2 - 6x -1 = 0 

delta phẩy = 9 + 2 = 11 = (\(\sqrt{11}\))2 

x1 = \(\dfrac{3+\sqrt{11}}{2}\)

x2 = \(\dfrac{3-\sqrt{11}}{2}\)

b) xét delta phẩy có :

9 - 2.(2m-5) = 19 - 4m 

+) điều kiện để phương trình vô nghiệm là 19 - 4m < 0 => m > \(\dfrac{19}{4}\)

+) điều kiện để phương trình có nghiệm kép là 19 - 4m = 0 => m = \(\dfrac{19}{4}\)

+) điều kiện để phương trình có 2 nghiệm phân biệt là 19 - 4m > 0 

=> m < \(\dfrac{19}{4}\)

Bình luận (0)
NT
Xem chi tiết
HP
Xem chi tiết
TC
23 tháng 11 2021 lúc 8:15

Câu 1:Ta có:

a) \(\left|x-3\right|=5\Leftrightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b) \(\left|2x+3\right|=2.\left|4-x\right|\)

+)Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le x\le4\)

Khi đó \(2x+3=2\left(4-x\right)\Leftrightarrow2x+3=8-2x\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow x\ge4\)

Khi đó: \(2x+3=2\left(x-4\right)=2x-8\Leftrightarrow0x=-11\left(vl\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{-3}{2}\)

Khi đó: \(-\left(2x+3\right)=2.\left(4-x\right)\Leftrightarrow-2x-3=8-2x\left(vl\right)\)

+)Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge4\end{matrix}\right.\) \(\left(vl\right)\)

Vậy...

c) ĐKXĐ : \(3-x\ge0\Leftrightarrow x\le3\)

+)Xét \(x^{^2}-3x+1\ge0\)

\(\Leftrightarrow x^2-3x+1=3-x\Leftrightarrow x^2-2x-2=0\)

\(\Leftrightarrow x^2-2x+1=3\Leftrightarrow\left(x-1\right)^2=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(tm\right)\\x=1-\sqrt{3}\left(tm\right)\end{matrix}\right.\)

+)Xét \(x^{^2}-3x+1\le0\)

\(\Leftrightarrow-\left(x^2-3x+1\right)=3-x\)

\(\Leftrightarrow x^2-3x+1=x-3\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tm\right)\)

Vậy...

Bình luận (0)
TC
23 tháng 11 2021 lúc 8:40

Câu 2:

 Ta có:

Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có một nghiệm là \(x=-3\)

\(\Rightarrow\)Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có ba nghiệm phân biệt khi và chỉ khi \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\)

Ta có:  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt khi và chỉ khi \(\text{△}>0\Leftrightarrow8-4m>0\Leftrightarrow m< 2\)

 Gọi \(x_1\) và \(x_2\) là 2 nghiệm của phương trình \(x^2-2x+m-1=0\).Theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-2}{1}=2\\x_1x_2=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-x_2\\\left(2-x_2\right).x_2=m-1\end{matrix}\right.\)

Nếu \(x_2\ne-3\) thì \(m-1\ne-15\Leftrightarrow m\ne-14\).

Do vai trò của  \(x_1\) và \(x_2\) là như nhau nên  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\) khi và chỉ khi: \(\left\{{}\begin{matrix}m< 2\\m\ne-14\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
LH
3 tháng 7 2021 lúc 22:16

\(x^2-2\left(2m+1\right)x+4m^2+4m=0\)

Để pt có hai ng pb\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow4>0\left(lđ\right)\)

\(\Rightarrow\)Pt luôn có hai ng pb với mọi m

\(\left\{{}\begin{matrix}x_1=\dfrac{2\left(2m+1\right)+\sqrt{4}}{2}=2m+2\\x_2=\dfrac{2\left(2m+1\right)-\sqrt{4}}{2}=2m\end{matrix}\right.\)

Có \(\left|x_1-x_2\right|=x_1+x_2\)

\(\Leftrightarrow\left|2m+2-2m\right|=2m+2+2m\)

\(\Leftrightarrow2=4m+2\)

\(\Leftrightarrow m=0\)

Vậy...

Bình luận (0)
KY
3 tháng 7 2021 lúc 22:15

Tham khảo 

Tìm m để phương trình x2 – 2(2m + 1)x + 4m2 + 4m = 0 

Bình luận (0)
HT
Xem chi tiết
TA
23 tháng 7 2021 lúc 9:06

còn cái nịt

Bình luận (2)
PB
Xem chi tiết
CT
16 tháng 2 2018 lúc 3:28

(2m + 1)x + m - 5 ≥ 0 ⇔ (2m + 1)x ≥ 5 - m (*)

TH1: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Tập nghiệm của bất phương trình là:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Để bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1)

thì (0;1) Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Hay Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

TH2: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Bất phương trình vô nghiệm. ⇒ không có m .

TH3: Với Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Tập nghiệm của bất phương trình là:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Để bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1)

thì (0;1) Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Hay Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Kết hợp điều kiện Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , ⇒ không có m thỏa mãn.

Vậy với m ≥ 5, bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1).

Bình luận (0)