Những câu hỏi liên quan
TP
Xem chi tiết
KN
14 tháng 2 2020 lúc 6:56

We have two cases:

+) If \(x\ge2016\)then \(x-2016\ge0\Rightarrow\left|x-2016\right|=x-2016\)

Equation becomes: \(x-2016=2016x\)

\(\Leftrightarrow2015x=-2016\Leftrightarrow x=\frac{-2016}{2015}\)(not satisfied)

+) If \(x< 2016\)then \(x-2016< 0\Rightarrow\left|x-2016\right|=2016-x\)

Equation becomes: \(2016-x=2016x\)

\(\Leftrightarrow2017x=2016\Leftrightarrow x=\frac{2016}{2017}\)(satisfied)

So ​\(x=\frac{2016}{2017}\)

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
TN
23 tháng 9 2017 lúc 18:40

\(2015\sqrt{2015x-2014}+\sqrt{2016x-2015}=2016\)

ĐK:\(x\ge\frac{2015}{2016}\)

\(\Leftrightarrow2015\left(\sqrt{2015x-2014}-1\right)+\sqrt{2016x-2015}-1=0\)

\(\Leftrightarrow2015\frac{2015x-2014-1}{\sqrt{2015x-2014}+1}+\frac{2016x-2015-1}{\sqrt{2016x-2015}+1}=0\)

\(\Leftrightarrow2015\frac{2015x-2015}{\sqrt{2015x-2014}+1}+\frac{2016x-2016}{\sqrt{2016x-2015}+1}=0\)

\(\Leftrightarrow2015\frac{2015\left(x-1\right)}{\sqrt{2015x-2014}+1}+\frac{2016\left(x-1\right)}{\sqrt{2016x-2015}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}\right)=0\)

Dễ thấy: \(\frac{2015^2}{\sqrt{2015x-2014}+1}+\frac{2016}{\sqrt{2016x-2015}+1}>0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

Bình luận (0)
DD
Xem chi tiết
MH
18 tháng 9 2015 lúc 10:17

x=2015

=> x+1=2016

=> A=x2016-(x+1).x2015+(x+1).x2014-(x+1).x2013+...+(x+1)x2-(x+1)x+2016

=x2016-x2016-x2015+x2015+x2014-x2014-x2013+...+x3+x2-x2-x+2016

=-x+2016

=-2015+2016

=1

Vậy A=1.

Bình luận (0)
NV
Xem chi tiết
NH
Xem chi tiết
LT
Xem chi tiết
LH
Xem chi tiết
US
Xem chi tiết
LH
4 tháng 1 2017 lúc 22:28

Theo đề bài ta có

\(f\left(x\right)=x^{2017}-2016.x^{2016}+2016.x^{2015}-...+2016.x-1\)

Với \(f\left(2015\right)\)thì \(x=2015,x+1=2016\)

\(\Rightarrow f\left(x\right)=x^{2017}-\left(x+1\right).x^{2016}+\left(x+1\right).x^{2015}-...+\left(x+1\right).x-1\)

\(\Rightarrow f\left(x\right)=x^{2017}-x^{2017}-x^{2016}+x^{2016}+x^{2015}-...+x^2+x-1\)

\(\Rightarrow f\left(x\right)=x-1\)

\(\Rightarrow f\left(2015\right)=2015-1=2014\)

Vậy f(2015)=2014

Bình luận (0)
NT
Xem chi tiết
NL
30 tháng 12 2018 lúc 18:06

\(x\ge-3\)

\(x^4\left(\sqrt{x+3}-2\right)+2016\left(x-1\right)=0\)

\(\Leftrightarrow\dfrac{x^4\left(x-1\right)}{\sqrt{x+3}+2}+2016\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x^4}{\sqrt{x+3}+2}+2016\right)=0\)

\(\Leftrightarrow x-1=0\) (do \(\dfrac{x^4}{\sqrt{x+3}+2}+2016>0\) \(\forall x\ge-3\) )

\(\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

Bình luận (0)