1.2.3+2.3.4+3.4.5+.......+10.11.12
Hộ mình với cảm ơn
P=1/1.2.3+1/2.3.4+1/3.4.5+...+1/10.11.12
2P=2/1.2.3+2/2.3.4+2/3.4.5+2/10.11.12
2P=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+.....+1/10.11-1/11.12
2P=1/1.2-1/11.12
2P=1/2-1/132
2P=66/132-1/132
2P=65/132
P=65/264
\(P=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)
\(P=\dfrac{1}{2}-\dfrac{1}{11.12}\)
\(P=\dfrac{65}{132}\)
M=1/1.2.3+1/2.3.4+1/3.4.5+....+1/10.11.12
\(M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{10.11}-\frac{1}{11.12}\)
\(M=\frac{1}{2}-\frac{1}{11.12}=\frac{65}{132}\)
Tính nhanh tổng sau: 1/1.2.3+1/2.3.4+1/3.4.5+...+1/10.11.12
Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Áp dụng:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\\ =\dfrac{1}{2}-\dfrac{1}{11\cdot12}=\dfrac{1}{2}-\dfrac{1}{132}=\dfrac{65}{132}\)
Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Áp dụng
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{10\cdot11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+..+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{11\cdot12}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{132}\right)=\dfrac{1}{2}\cdot\dfrac{65}{132}=\dfrac{65}{264}\)
Ta có: \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Đặt \(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)
\(\Leftrightarrow2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\)
\(=\dfrac{1}{2}-\dfrac{1}{11.12}=\dfrac{65}{132}\)
\(\Rightarrow A=\dfrac{65}{132}:2=\dfrac{65}{264}\)
Tính M biết:
M = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{10.11.12}\)
Bạn nào giải nhanh hộ mk với đg gấp ^_^
\(2M=2\cdot\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+.....+\frac{1}{10\cdot11\cdot12}\right)\)
\(2M=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+.....+\frac{2}{10\cdot11\cdot12}\)
\(2M=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+.....+\frac{1}{10\cdot11}-\frac{1}{11\cdot12}\)
\(2M=\frac{1}{1\cdot2}-\frac{1}{11\cdot12}\)
\(2M=\frac{1}{2}-\frac{1}{132}\)
\(2M=\frac{66}{132}-\frac{1}{132}\)
\(2M=\frac{65}{132}\)
\(M=\frac{65}{132}:2\)
\(M=\frac{65}{264}\)
Tính nhanh tổng sau: \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)
\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)
Tính :
M = 5/1.2.3 + 5/2.3.4 + 5/3.4.5 + ... + 5/10.11.12
Ai nhanh mk tk nha !!
Ta có :
\(M=\frac{5}{1.2.3}+\frac{5}{2.3.4}+...+\frac{5}{10.11.12}\)
\(M=5.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{10.11.12}\right)\)
\(M=5.\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\right)\)
\(M=\frac{5}{2}.\left(\frac{1}{1.2}-\frac{1}{11.12}\right)\)
\(M=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{132}\right)\)
\(M=\frac{5}{2}.\left(\frac{66}{132}-\frac{1}{132}\right)\)
\(M=\frac{5}{2}.\frac{65}{132}\)
\(M=\frac{325}{264}\)
Tham khảo nha !!! Chúc học tốt !!!
Công thức :
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\frac{1}{3}=\frac{1}{1.2.3}\)
Tính giá trị của biểu thức:
M= 1/1.2.3+1/2.3.4+1/3.4.5+...+1/10.11.12
Nhận xét rằng:
2/[(n - 1)n(n +1)] = 1/[(n-1).n] - 1/[n(n+1)]
Do đó
2M = 2/(1.2.3) + 2/(2.3.4) + 2/(3.4.5) + ... + 2(10.11.12)
= 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + 1/(3.4) - 1/(4.5) + .... + 1/(10.11) - 1/(11.12)
= 1/(1.2) - 1/(11.12) = 65/132
=> M = 65/264
Ta có nhận xét: \(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{3-1}{1.2.3}=\dfrac{2}{1.2.3}\),
\(\dfrac{1}{2.3}-\dfrac{1}{3.4}=\dfrac{4-2}{2.3.4}=\dfrac{2}{2.3.4};...\)
\(\Rightarrow\dfrac{1}{1.2.3}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)\);
\(\dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\);...
Do đó \(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{1.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{11.12}\right)\)
\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)
/n.(n+1)(n+2)=1/n*(1/(n+1)-1/(n+2)) = 1/n(n+1) - 1/n(n+2) = 1/n - 1/(n+1) - 1/2n + 1/2(n+2)
. . . ...... ... . . . = 1/2n - 1/(n+1) + 1/2(n+2)
như vậy ta có
1/1.2.3 = 1/2 - 1/2 + 1/6
1/2.3.4 = 1/4 - 1/3 + 1/8
1/3.4.5 = 1/6 - 1/4 + 1/10
1/4.5.6 = 1/8 - 1/5 + 1/12
.........................................
1/(n-1)n(n+1)= 1/2(n-1) - 1/n + 1/2(n+1)
1/n.(n+1)(n+2)= 1/2n - 1/(n+1) + 1/2(n+2)
=> tong = 1/4 - 1/2(n+1) + 1/2(n+2)
Tính giá trị của biểu thức:
M = 1/1.2.3+1/2.3.4+1/3.4.5+...+1/10.11.12
\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{10.11.12}\)
\(M=\frac{1}{2}-\frac{1}{11.12}\)
\(M=\frac{65}{132}\)
Ngắn gọn , xúc tích !!! :))
tính
\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+..............+\frac{1}{10.11.12}\)
\(M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\right)\)
\(M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{11.12}\right)\)
\(M=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{132}\right)\)