Ôn tập toán 6

BL

Tính giá trị của biểu thức:

M= 1/1.2.3+1/2.3.4+1/3.4.5+...+1/10.11.12

H24
17 tháng 4 2017 lúc 21:16

Nhận xét rằng:
2/[(n - 1)n(n +1)] = 1/[(n-1).n] - 1/[n(n+1)]
Do đó
2M = 2/(1.2.3) + 2/(2.3.4) + 2/(3.4.5) + ... + 2(10.11.12)
= 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + 1/(3.4) - 1/(4.5) + .... + 1/(10.11) - 1/(11.12)
= 1/(1.2) - 1/(11.12) = 65/132
=> M = 65/264

Bình luận (1)
AT
17 tháng 4 2017 lúc 21:18

Ta có nhận xét: \(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{3-1}{1.2.3}=\dfrac{2}{1.2.3}\),

\(\dfrac{1}{2.3}-\dfrac{1}{3.4}=\dfrac{4-2}{2.3.4}=\dfrac{2}{2.3.4};...\)

\(\Rightarrow\dfrac{1}{1.2.3}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)\);

\(\dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\);...

Do đó \(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{1.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)

Bình luận (0)
PL
17 tháng 4 2017 lúc 21:23

/n.(n+1)(n+2)=1/n*(1/(n+1)-1/(n+2)) = 1/n(n+1) - 1/n(n+2) = 1/n - 1/(n+1) - 1/2n + 1/2(n+2)
. . . ...... ... . . . = 1/2n - 1/(n+1) + 1/2(n+2)
như vậy ta có
1/1.2.3 = 1/2 - 1/2 + 1/6
1/2.3.4 = 1/4 - 1/3 + 1/8
1/3.4.5 = 1/6 - 1/4 + 1/10
1/4.5.6 = 1/8 - 1/5 + 1/12
.........................................
1/(n-1)n(n+1)= 1/2(n-1) - 1/n + 1/2(n+1)
1/n.(n+1)(n+2)= 1/2n - 1/(n+1) + 1/2(n+2)
=> tong = 1/4 - 1/2(n+1) + 1/2(n+2)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
NO
Xem chi tiết
hi
Xem chi tiết
HT
Xem chi tiết
LH
Xem chi tiết
CT
Xem chi tiết
KK
Xem chi tiết