chứng minh phân số sau tối giản: 2n-1/n^2+n+1
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
Chứng minh phân số sau tối giản.
2n+1/2n^2-1 (n là số tự nhiên)
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
Chứng minh rằng các phân số sau tối giản
a) \(\dfrac{2n+7}{2n+3}\) (n ∈ N)
b)\(\dfrac{6n+5}{8n+7}\)(n ∈ N)
c)\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
a: Gọi d=ƯCLN(2n+7;2n+3)
=>2n+7 chia hết cho d và 2n+3 chia hết cho d
=>2n+7-2n-3 chia hết cho d
=>4 chia hết cho d
mà 2n+7 lẻ
nên d=1
=>PSTG
b: Gọi d=ƯCLN(6n+5;8n+7)
=>4(6n+5)-3(8n+7) chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Chứng minh rằng phân số sau tối giản với mọi số nguyên n : n^3 + 2n/n^4 + 3n^2 + 1
gọi ( n3 + 2n ; n4 + 3n2 + 1 ) = d
\(\Leftrightarrow\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{cases}\Leftrightarrow n^2+1⋮d}\)
Mà n4 + 3n2 + 1 \(⋮\)d
= n4 + 2n2 + n2 + 1
= ( n4 + 2n2 + 1 ) + n2
= ( n2 + 1 ) 2 + n2 \(⋮\)d
\(\Rightarrow\)n2 \(⋮\)d
\(\Leftrightarrow\)1 \(⋮\)d
Tham khảo nha bạn! Mình không có thời gian!
Link:
tth
Đs
Gọi a là ước chung của n^3 +2n và n^4 + 3n^2 + 1
n^3 + 2n chia hết cho a => n(n^3 + 2n) chia hết cho a = > n^4 + 2n^2 chia hết cho a (1)
n^4 + 3n^2 + 1 - (n^4 + 2n^2 )= n^2 +1 chia hết cho a = > (n^2 + 1) ^ 2 = n^4 + 2n^2 + 1 chia hết cho d (2)
Từ (1) và (2), suy ra:
(n^4 + 2n^2 + 1) - (n^4 + 2n ^2 ) chia hết cho a = > 1 chia hết cho a = > a = + - 1
Vậy phân số trên tối giản vì mẫu tử có ước chung là n + 1
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
Chứng minh phân số sau tối giản n thuộc N
2n+1/4n+1
2n+1/4n+1
Gọi d là ƯC của 2n+1 và 4n+1
=> d=2n+1 :4n+1
=> (2n+1: 4n+1 ): d
=>[ 2.(2n+1)-1.(4n+1)]
=>4n+2-4n-1
=>d=1
Vậy phân số trên là phân số tối giản
Chứng minh với các phân số sau tối giản với mọi nϵz
\(\dfrac{2n+1}{2n\left(n+1\right)}\)
Đặt \(d=ƯC\left(2n+1;2n^2+2n\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2+2n⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+1\right)\left(2n+1\right)-2\left(2n^2+2n\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow2n+1\) và \(2n\left(n+1\right)\) nguyên tố cùng nhau hay phân số đã cho tối giản với mọi n nguyên
Với mọi STN n chứng minh các phân số sau là phân số tối giản :A=2n+1/2n+3
Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath