Chứng minh rằng: \(2n^{2n}>\left(n^2+1\right)^n\), trong đó \(n\ge2,n\inℕ\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh rằng \(S=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)
\(S=\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
=>\(S< =\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
=>\(S< =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{n}\right)=\dfrac{1}{4}\cdot\dfrac{n-1}{n}< =\dfrac{1}{4}\)
1. Cho tập \(X=\left\{1,2,...,n\right\}\), ở đó \(n\inℕ^∗\). Chứng minh rằng số các tổ hợp gồm \(r\) phần tử của \(X\) không chứa bất kì 2 phần tử liên tiếp nào là \(C^r_{n-r+1}\) với \(0\le r\le n-r+1\)
2. Một hoán vị \(x_1,x_2,...,x_{2n}\) của tập \(\left\{1,2,...,2n\right\}\) (với \(n\inℕ\)) được gọi là có tính chất \(T\) nếu \(\left|x_i-x_{i+1}\right|=n\) với ít nhất một chỉ số \(i\) thuộc tập \(\left\{1,2,...,2n-1\right\}\). Chứng minh rằng với mọi \(n\) , có nhiều hoán vị có tính chất \(T\) hơn là những hoán vị không có tính chất \(T\).
Giúp mình làm những bài này với. Mình nghĩ mãi vẫn không nghĩ ra lời giải nào thỏa đáng. Mình cảm ơn trước.
Cho \(M=\dfrac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}\) với \(n\in\) N* .
Chứng minh rằng \(M< \dfrac{1}{2^{n-1}}\)
Lời giải:
\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)
\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)
\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)
Ta có đpcm.
Chứng minh rằng :
a) \(\dfrac{1.3.5.....39}{21.22.23.....40}=\dfrac{1}{2^{20}}\)
b) \(\dfrac{1.3.5....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\dfrac{1}{2^n}\) với \(n\in\) N*
a) Vế trái \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)
\(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)
b) Vế trái
\(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)
Chứng minh rằng:
\(\frac{1.3.5.7.9.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{1}{2^n}\)
Ta có:
\(1.3.5.7.9...\left(2n-1\right)=\frac{\left[1.3.5.7.9....\left(2n-1\right)\right].\left[2.4.6.8...2n\right]}{2.4.6.8....2n}=\frac{1.2.3.4.5.6....2n}{\left(2.1\right).\left(2.2\right).\left(2.3\right)\left(2.4\right)....\left(2.n\right)}\)
=> \(1.3.5.7.9...\left(2n-1\right)=\frac{1.2.3.4.5.6....2n}{\left(2.2.2.....2\right).\left(1.2.3.4.....n\right)}=\frac{\left(1.2.3.4.....n\right)\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}{2^n.\left(1.2.3.4....n\right)}\)
=> \(1.3.5.7.9...\left(2n-1\right)=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n}\)
=> \(\frac{1.3.5.7.9...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}=\frac{1}{2^n}\)(đpcm)
Chứng minh rằng:
a)\(\frac{1\cdot3\cdot5\cdot\cdot\cdot39}{21\cdot22\cdot23\cdot\cdot\cdot40}=\frac{1}{2^{20}}\)
b)\(\frac{1\cdot3\cdot5\cdot\cdot\cdot\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\cdot\cdot\cdot2n}=\frac{1}{2^n}\)Với \(n\inℕ^∗\)
Cho \(a\) là một số gồm \(2n\) chữ số \(1\), \(b\) là một số gồm \(n+1\) chữ số \(1\), \(c\) là một số gồm \(n\) chữ số \(1\) \(\left(n\inℕ^∗\right)\). Chứng minh rằng: \(a+b+6c+8\) là một số chính phương.
\(a=111...11\) (2n chữ số 1)
\(9a=999...99\) (2n chữ số 9)
\(9a+1=1000...00\) (2n chữ số 0)
\(\Rightarrow9a+1=10^{2n}\Rightarrow a=\dfrac{10^{2n}-1}{9}\)
Tương tự ta cũng có
\(b=\dfrac{10^{n+1}-1}{9}=\dfrac{10.10^n-1}{9}\)
\(c=\dfrac{10^n-1}{9}\)
\(\Rightarrow a+b+6c+8=\)
\(\dfrac{10^{2n}}{9}-\dfrac{1}{9}+\dfrac{10.10^n}{9}-\dfrac{1}{9}+\dfrac{6.10^n}{9}-\dfrac{6}{9}+8=\)
\(=\dfrac{10^{2n}}{9}+\dfrac{16.10^n}{9}+\dfrac{64}{9}=\)
\(=\left(\dfrac{10^n}{3}\right)^2+2.\dfrac{10^n}{3}.\dfrac{8}{3}+\left(\dfrac{8}{3}\right)^2=\)
\(=\left(\dfrac{10^n}{3}+\dfrac{8}{3}\right)^2\) Là một số chính phương
Chứng minh rằng:
\(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)....2n}=\frac{1}{2^n}\)
(với n ϵ N*)
Chứng minh rằng:
\(\frac{1.3.5....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)
Nhanh + đúng = tick