Những câu hỏi liên quan
HN
Xem chi tiết
NT
14 tháng 8 2016 lúc 21:18

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

Bình luận (0)
AN
14 tháng 8 2016 lúc 21:37

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

Bình luận (0)
NT
14 tháng 8 2016 lúc 21:42

Sao cậu k k cho tớ

Bình luận (0)
H24
Xem chi tiết
XO
24 tháng 7 2021 lúc 11:14

Ta có a - b + b - c + c - a = 0 \(⋮30\)

=> (a - b) + (b - c) + (c - a) \(⋮\)30 (0) 

Xét hiệu (a - b)5 + (b - c)5 + (c - a)5 - [(a - b) + (b - c) + (c - a)] 

= [(a - b)5 - (a - b)] + [(b - c)5 - (b - c)] + [(c - a)5 - (c - a)]

Nhận thấy : (a - b)5 - (a - b) = (a - b)[(a - b)4 - 1]

= (a - b)[(a - b)2 - 1][(a - b)2 + 1] 

= (a - b)[(a - b)2 - 1][(a - b)2 - 4 + 5]

=  (a - b)[(a - b)2 - 1][(a - b)2 - 4] +  5(a - b)[(a - b)2 - 1]  

= (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1)(a - b)(a - b + 1)

Nhận thấy (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1) \(⋮\)30 (tích 5 số nguyên liên tiếp) (1)

Lại có (a - b - 1)(a - b)(a - b + 1) \(⋮\)6

=> 5(a - b - 1)(a - b)(a - b + 1) \(⋮\)30 (2) 

Từ (1) và (2) =>  (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1)(a - b)(a - b + 1) \(⋮\)30 

=> (a - b)5 + (b - c)5 + (c - a)5 - [(a - b) + (b - c) + (c - a)]  \(⋮\)30 (4) 

Từ (0) ; (4) => (a - b)5 + (b - c)5 + (c - a)5 \(⋮\)30 (đpcm) 

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
NH
Xem chi tiết
KK
5 tháng 11 2017 lúc 19:46

khó quá

Bình luận (0)
PK
27 tháng 3 2018 lúc 19:05

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

Bình luận (0)
NT
Xem chi tiết
TC
7 tháng 8 2021 lúc 20:33

undefined

Bình luận (0)
NT
7 tháng 8 2021 lúc 23:05

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Bình luận (0)
VA
Xem chi tiết
VD
Xem chi tiết
LM
27 tháng 3 2022 lúc 8:53

tra gút gồ đe=))

Bình luận (7)
XO
27 tháng 3 2022 lúc 9:05

Đề HSG Nghệ An ak bạn 

P = \(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)+5\left(n-1\right)\left(n+1\right)\)

\(⋮5\Leftrightarrow Q=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮5\)

mà n không chia hết cho 5 => có dạng n = 5k + 1 ;5k + 2 ; 5k + 3 ;5k + 4 (k \(\in Z\)

Khi n = 5k + 1 => n - 1 \(⋮5\Rightarrow Q⋮5\Rightarrow P⋮5\)

tương tự với n = 5k + 2 ; n = 5k + 3 ; n = 5k + 4 thì Q \(⋮5\Rightarrow P⋮5\)

Bình luận (0)
NL
27 tháng 3 2022 lúc 15:05

b. 

Điều duy nhất cần chú ý trong bài toán này: \(n^4\equiv1\left(mod5\right)\) với mọi số nguyên n ko chia hết cho 5

Do đó:

- Nếu cả 5 số a;b;c;d;e đều ko chia hết cho 5 thì vế trái chia hết cho 5, vế phải ko chia hết cho 5 (ktm)

- Nếu cả 5 số a;b;c;d;e đều chia hết cho 5 thì do chúng là số nguyên tố

\(\Rightarrow a=b=c=d=e=5\)

Thay vào thỏa mãn

- Nếu có k số (với \(1\le k\le4\)) trong các số a;b;c;d;e chia hết cho 5, thì vế phải chia hết cho 5, vế phải chia 5 dư \(5-k\ne\left\{0;5\right\}\) nên ko chia hết cho 5 \(\Rightarrow\) ktm

Vậy \(\left(a;b;c;d;e\right)=\left(5;5;5;5;5\right)\) là bộ nghiệm nguyên tố duy nhất

Bình luận (0)
NN
Xem chi tiết
TT
Xem chi tiết
HN
21 tháng 7 2016 lúc 6:52

a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)

\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8  

b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)

Vì B chứa thừa số 4 nên B chia hết cho 4

Bình luận (0)