cho tam giác ABC có 3 cạnh thỏa mãn\(a^2+b^2=5c^2\)
CMR \(2Cos^2C+SinA.SinB.CosC=2\)
cho tam giác ABC có 3 cạnh thỏa mãn\(a^2+b^2=5c^2\)
CMR \(2Cos^2C+SinA.SinB.CosC=2\)
Cho tam giác ABC có cạnh thỏa mãn \(a^2+b^2=5c^2\).Tính góc giữa 2 đường trung tuyến AM và BN
Hình vẽ chỉ mang tính chất minh họa:
Gọi G là trọng tâm tam giác, P là trung điểm AB
Áp dụng công thức trung tuyến:
\(CP^2=\dfrac{2\left(a^2+b^2\right)-c^2}{4}=\dfrac{10c^2-c^2}{4}=\dfrac{9c^2}{4}\)
\(\Rightarrow CP=\dfrac{3c}{2}\Rightarrow GP=\dfrac{1}{3}CP=\dfrac{c}{2}=\dfrac{AB}{2}=AP=BP\)
\(\Rightarrow\widehat{AGB}\) là góc nội tiếp chắn nửa đường tròn đường kính AB
\(\Rightarrow AM\perp BN\)
Xin phép được chia sẻ 1 cách giải để bạn tham khảo, em cám ơn thầy Nguyễn Việt Lâm luôn nhiệt tình giúp đỡ chúng em ạ
Cho tam giác ABC có độ dài 3 cạnh là BC=a,AC=b,AB=c thỏa mãn a^2+b^2>5c^2.CMR:góc C <60 độ
Cho tam giác ABC có độ dài 3 cạnh là BC = a, AC = b, AB = c thỏa mãn: a2 + b2 > 5c2 . CMR góc C < 60o
Ta sẽ chứng minh c là cạnh nhỏ nhất.
Thật vậy,giả sử c không phải là cạnh nhỏ nhất.
Giả sử \(c\ge a\Rightarrow c+c\ge a+c>b\Rightarrow2c>b\Leftrightarrow4c^2>b^2\)
Do \(c\ge a\) nên \(4c^2+c^2=5c^2\ge a^2+b^2\) (trái với gt)
Với \(c\ge b\) chứng minh tương tự của dẫn đến vô lí.
Do đó c là cạnh nhỏ nhất.Khi đó:
\(a+b+c>3c\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o>3.\widehat{C}\Leftrightarrow\widehat{C}< 60^o\) (đpcm)
Không chắc nha!Sai đừng trách.
Giả sử \(c\ge a>0\)\(\Rightarrow c^2\ge a^2\)mà \(a^2+b^2>5c^2\)
\(\Rightarrow a^2+b^2>5a^2\Rightarrow b^2>4a^2\Rightarrow b>2a\) (1)
Vì \(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\Rightarrow b^2>4c^2\Rightarrow b>2c\)(2)
Từ (1) và (2) => 2b>2a+2c => b> a + c (vô lý) => c<a
Tương tự ta được c<b => c là độ dài cạnh nhỏ nhất
=> \(\widehat{C}\)là góc nhỏ nhất \(\Rightarrow\widehat{C}< \widehat{A}\)và \(\widehat{C}< \widehat{B}\)
=> \(3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{C}< 60^o\)
Vậy \(\widehat{C}< 60^o\)(đpcm)
Cho a,b,c là độ dài 3 cạnh của tam giác ABC thảo mãn a^2 + b^2 > 5c^2. CMr c<a và c<b
Cho tam giác ABC có BC=a; AC=b; AB=c thỏa mãn a2 +b2> 5c2
CMR; Góc C.60 độ
Cho tam giác ABC có độ dài 3 cạnh là BC = a, AC = b, AB = c thỏa mãn: a2 + b2 > 5c2. Chứng minh góc C < 600
Cho a,b,c là độ dài 3 cạnh của tam giác ABC thảo mãn a^2 + b^2 > 5c^2. CMr c<a và c<b
Giúp mình với ạ cần gấp
Cho tam giác ABC có độ dài các cạnh BC=a, AC=b, AB=c thỏa mãn \(a^4+b^4+c^4=2a^2b^2+2a^2c^2\). Tìm số đo góc \(\widehat{BAC}\)
Giả thiết tương đương:
\(a^4+b^4+c^4+2b^2c^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow a^4+\left(b^2+c^2\right)^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow\left(b^2+c^2-a^2\right)^2=2b^2c^2\)
\(\Leftrightarrow b^2+c^2-a^2=\pm\sqrt{2}bc\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\pm\sqrt{2}bc}{2bc}=\pm\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}A=45^0\\A=135^0\end{matrix}\right.\)