cm phương trình vô nghiệm:
\(x^4+x^3+x^2+x+1=0\)
a Tìm m để phương trình vô nghiệm: x2 - (2m - 3)x + m2 = 0.
b Tìm m để phương trình vô nghiệm: (m - 1)x2 - 2mx + m -2 = 0.
c Tìm m để phương trình vô nghiệm: (2 - m)x2 - 2(m + 1)x + 4 - m = 0
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
chứng minh phương trình vô nghiệm x^6 + x^5 + x^4 + x^3 + x^2 + x +1 = 0
Với x khác 1 nhân cả hai vế với (x-1) khác 0
\(\left(x-1\right)\left(x^6+x^5+..+1\right)=x^7-1=0\)
\(x^7=1\)
với x>1 hiển nhiên VT>1 => vô nghiệm
với 0<=x<1 hiển nhiên VT<1
Với x<0 do số mũ =7 lẻ => VT<0<1
Kết luận: PT x^7-1=0 có nghiệm duy nhất x=1 => (......) khác 0 với mọi x
chứng minh phương trình x^6+x^5+x^4+x^3+x^2+x+1=0 vô nghiệm
minh hc lop 6 nen khong biet lam toan lop 8
ptr <=> x^6 - x^5 + (1/4)x^4 + (3/4)x^4 - x³ + (1/3)x² + (2/3)x² - x + 3/8 + 3/8 = 0
<=> x^4.(x² - x + 1/4) + (3x²/4).(x² - 4x/3 + 4/9) + (2/3)(x² - 3x/2 + 9/16) + 3/8 = 0
<=> x^4.(x - 1/2)² + (3x²/4).(x - 2/3)² + (2/3)(x - 3/4)² + 3/8 = 0
ptrình vô nghiệm vì VT > 0 với mọi x (thậm chí VT > 3/8 với mọi x)
Tìm m để :
a. Phương trình \(x^2-\left(2m+1\right)x+m^2-3=0\) có nghiệm kép
b. Phương trình \(x^2-3mx+m-2=0\) vô nghiệm
c. Phương trình \(x^2-2\left(m-1\right)x+m^2=0\) có nghiệm
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2
Chứng minh các phương trình sau vô nghiệm:
a) (x-2)3=(x-2).(x2+2x+4)-6.(x-1)2
b)4x2-12x+10=0
Chứng minh các phương trình sau vô số nghiệm:
(x+1).(x2-x-1)=(x+1)3-3x.(x+1)
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
CMR: phương trình sau vô nghiệm: \(x^6+x^5+x^4+x^3+x^2+x+1=0\)
troi oi anh oi kho nhu vay lam sao ma lam duoc vay de hay la em len hoi thay giao em nhe thay em chinh la bo cua em day va bo em chinh la hieu pho cua truong thcs doan ket
\(x^6+x^5+x^4+x^3+x^2+x+1=x^4\left(x^2+x\right)+x^2\left(x^2+x\right)+x^2+x+1\)
\(=\left(x^2+x\right)\left(x^4+x^2+1\right)+1\)
\(Taco:\left(x^2+x\right)\left(x^4+x^2+1\right)\ge0\forall x\Rightarrow\left(x^2+x\right)\left(x^4+x^2+1\right)+1\ge1\)
\(Ma:\left(x^2+x\right)\left(x^4+x^2+1\right)+1=0\left(loai\right)\)
Vay pt vo nghiem
cho P(x)=x^3+ax^2+bx+c; Q(x)=x^2+x+2013. Biết phương trình P(x)=0 có 3 nghiệm phân biệt, còn phương trình P(Q(x))=0 vô nghiệm. CMR: P(2013)>1/64
+) Ta có: P(x) = 0 có 3 nghiệm phân biệt
=> Gọi 3 nghiệm đó là m; n ; p.
=> P(x) = ( x - m ) ( x - p ) (x - n)
=> P(Q(x)) = ( x^2 + x + 2013 -m )( x^2 + x + 2013 -n )( x^2 + x + 2013 - p )
Vì P(Q(x)) =0 vô nghiệm nên: x^2 + x + 2013 - m = 0 ;x^2 + x + 2013 - m = 0; x^2 + x + 2013 - m = 0 đều vô nghiệm
=> \(\Delta_m=1^2-4\left(2013-m\right)< 0;\Delta_n=1^2-4\left(2013-n\right)< 0;\Delta_p=1^2-4\left(2013-p\right)< 0\)
=> \(2013-m>\frac{1}{4};2013-n>\frac{1}{4};2013-p>\frac{1}{4}\)
=> P(2013) = ( 2013 - m) (2013 -n ) (2013 - p) >\(\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\)
Chứng minh phương trình sau vô nghiệm :
\(x^4+x^3+x^2+x+1=0\)
CM phương trình x^2-3x+12= 0 vô nghiệm
\(x^2-3x+12=0\)
\(\Rightarrow\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{39}{4}=0\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{39}{4}=0\left(VLý\right)\)
Vậy PT vô nghiệm với mọi x∈R