Những câu hỏi liên quan
VU
Xem chi tiết
TD
Xem chi tiết
VN
30 tháng 12 2019 lúc 21:28

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\) 

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{abc.a+abc+ab}\) 

Thay abc = 1, ta có:

\(\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)

\(=\frac{ab+a+1}{ab+a+1}\)

\(=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
TT
5 tháng 8 2016 lúc 21:09

 \(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ca}\)

\(=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ca}\)

thay a.b.c=1 Ta đc:

\(a=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+a}\) cộng 3 phân số cùng mẫu c+ac+1

\(=\frac{c+ac+1}{c+ac+1}=1\)

tick cho mk vs nhé

Bình luận (0)
HT
Xem chi tiết
KB
19 tháng 12 2017 lúc 16:56

Cho a,b,c thuộc R và a.b.c=1.chứng minh  \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)

Giải:Ta có:\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a.c}{abc+ac+c}+\frac{b}{bc+b+abc}+\frac{c}{ca+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{c+1+ac}+\frac{c}{ca+c+1}\)

\(=\frac{ac+1+c}{ac+c+1}=1\)

Suy ra điều phải chứng minh

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
JQ
7 tháng 8 2016 lúc 9:49

\(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)\(=\frac{1}{ab+a+1}+\frac{a}{a\left(bc+b+1\right)}+\frac{abc}{ca+c+abc}\)

\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1\)

Bình luận (0)
H24
21 tháng 9 2020 lúc 22:52

Theo bài ra ta có: a.b.c = 1

    =>  a=1;b=1;c=1

Ta có: A = \(\frac{1}{a.b+a+1}\)\(+\frac{1}{b.c+b+1}+\frac{1}{c.a+c+1}\)\(=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}\)\(+\frac{1}{1.1+1+1}\)

             \(=\frac{1}{1+1+1}+\frac{1}{1+1+1}+\frac{1}{1+1+1}\)\(=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=1\)

Vậy A = 1

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
LH
6 tháng 8 2016 lúc 15:21

\(A=\)\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

    \(=\frac{c}{\left(ab+a+1\right)c}+\frac{ac}{\left(bc+b+1\right).ac}+\frac{1}{ca+c+1}\)

    \(=\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\)

    \(=\frac{c}{1+ac+c}+\frac{ac}{c+1+ac}+\frac{1}{ca+c+1}\)

    \(=\frac{c+ac+1}{1+ac+c}=1\)

  

Bình luận (0)
NT
Xem chi tiết
DH
Xem chi tiết
NL
23 tháng 2 2020 lúc 8:00

\(B=\frac{1}{1+a+ab}+\frac{a}{a+ab+abc}+\frac{abc}{abc+c+ca}\)

\(=\frac{1}{1+a+ab}+\frac{a}{a+ab+1}+\frac{abc}{c\left(ab+1+a\right)}\)

\(=\frac{1}{1+a+ab}+\frac{a}{a+ab+1}+\frac{ab}{ab+1+a}\)

\(=\frac{1+a+ab}{1+a+ab}=1\)

Bình luận (0)
 Khách vãng lai đã xóa