giải và biện luận phương trình
a(ax-1)=x(3a-2)-1
Giải và biện luận bất phương trình
a) (m-1).x + m +2 > 2x + 4
b) m.(m-2).x < m - (x +1)
b: =>x(m^2-2m)-m+x+1<0
=>x(m^2-2m+1)<m-1
=>x(m-1)^2<m-1
TH1: m=1
BPT sẽ là 0x<0(vô lý)
TH2: m<>1
BPT sẽ có nghiệm là x<1/(m-1)
a: =>x(m-1)-2x>-m-2+4
=>x(m-3)>-m+2
TH1: m=3
BPT sẽ là 0x>-3+2=-1(luôn đúng)
TH2: m<3
BPT sẽ có nghiệm là x<(-m+2)/(m-3)
TH3: m>3
BPT sẽ có nghiệm là x>(-m+2)/(m-3)
Háy giải và biện luận phương trình:
1) 4x-2=a(ax-1)
2) (a+x)/(a-1)-(a-x)/(a+1)=3a/(x^2-1)
Giải và biện luận phương trình sau:
1. ax2 - ab = b2(x - 1)
2. a(ax + b) = b2(x - 1)
2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow a^2x+ab=b^2x-b^2\)
\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)
\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)
\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)
Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)
Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)
Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)
giải và biện luận phương trình
a(ax+1)=x(a+2)+2
Giải và biện luận các phương trình sau
1. a(ax + b) = b2(x - 1)
2. ax2 - ab = b2(x - 1)
Giải và biện luận phương trình \(\frac{ax-1}{x-1}+\frac{2}{x+1}=\frac{a\left(x^2+1\right)}{x^2-1}\)
giải và biện luận phương trình sau với a, b là tham số
1/ \(b\left(ax-b+2\right)x=2\left(ax+1\right)\)
2/ \(a^2x=a\left(x+b\right)-b\)
giải và biện luận phương trình với a là tham số:
a (ax-1) = x-1
Giải biện luận phương trình
a(ax+1)=x(a+2)+2
Lời giải:
PT $\Leftrightarrow x(a^2-a-2)=2-a$
$\Leftrightarrow x(a-2)(a+1)=2-a$
Nếu $a\neq 2; a\neq -1\Rightarrow (a-2)(a+1)\neq 0$. Khi đó PT có nghiệm duy nhất $x=\frac{2-a}{(a-2)(a+1)}=\frac{-1}{a+1}$
Nếu $a=2\Rightarrow x.0.3=0$ (luôn đúng), tức là PT có vô số nghiệm $x\in\mathbb{R}$
Nếu $a=-1\Rightarrow x.(-3).0=3$ (vô lý), tưc là PT vô nghiệm.