Xác định các số a, b sao cho 3x+1/x^2-3x+2= a/x-1 +b/x-2, với mọi x
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1: Xác định các số a,b,c,d sao cho
x^3/(x^4-1) = a/(x-1) + b/(x+1) + (cx+d)/(x^2+1)
Bài 2: Tìm giá trị nguyên của x để giá trị của biểu thức sau là số nguyên.
A = (3x^2-x+3)/(3x+2)
Cho 2 Đthức P(x)= x3 + ax + b và Q(x)= x2 - 3x + 2 Xác định hệ số a,b sao cho với mọi giá trị x thì P(x) chia hết Q(x)
Xác định các hệ số a,b,c sao cho:\(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{9x^2-16x+4}{x^3-3x^2+2x}\)
Biến đổi vế phải ta được :
\(VP=\frac{9x^2-16x+4}{x^3-3x^2+2x}=\frac{9x^2-16x+4}{x\left(x^2-3x+2\right)}=\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}\)(1)
Biến đổi vế trái ta được :
\(VT=\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x-2}=\frac{a\left(x-1\right)\left(x-2\right)+bx\left(x-2\right)+c\left(x-1\right)x}{x\left(x-1\right)\left(x-2\right)}\)
\(=\frac{ax^2-3ax+2a+bx^2-2bx+cx^2-cx}{x\left(x-1\right)\left(x-2\right)}=\frac{\left(a+b+c\right)x^2+\left(-3a-2b-c\right)x+2a}{x\left(x-1\right)\left(x-2\right)}\)(2)
Từ (1);(2) \(\Rightarrow\frac{9x^2-16x+4}{x\left(x-1\right)\left(x-2\right)}=\frac{\left(a+b+c\right)x^2+\left(-3a-2b-c\right)x+2a}{x\left(x-1\right)\left(x-2\right)}\)
Động nhất hệ số ta được : \(\hept{\begin{cases}a+b+c=9\\-3a-2b-c=-16\\2a=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b+c=9\\3a+2b+c=16\\a=2\end{cases}\Leftrightarrow\hept{\begin{cases}b+c=7\\2b+c=10\end{cases}\Leftrightarrow}\hept{\begin{cases}b=3\\c=4\end{cases}}}\)
Vậy \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)
Xác định các hệ số a,b để \(f\left(x\right)=x^4+3x^3-x^2+\left(2a-b\right)x+3b+a\) chia hết cho \(g\left(x\right)=x^2+3x-1\)
f(x) chia hết cho x^2+3x-1
=>(2a-b)=0 và 3b+a=0
=>a=b=0
1.Xác định hệ số a,b sao cho x4-3x3-x2+ax+b chia hết cho x2-3x+2
2. Xác định các hằng số a,b, sao cho
a) x^4 + ax^2 + b chia hết cho x^2 -x +1
b) ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x - 10
c) ax^ 3 + bx - 24 chia hết cho ( x+1) ( x+3)
Xác định hệ số a,b sao cho:
\(\frac{x^2+5}{x^2-3x-2}=\frac{a}{x-2}+\frac{b}{x^2+2x+1}\)
Xác định a và b biết: (x+a)(x+b)=x^2+3x+b với mọi x
B1: Làm phép chia:
a) (x^4+x^3+6x^2+5x+5):(x^2+x+1)
b) (x^4+x^3+2x^2+x+1):(x^2+x+1)
c) (3x^3+8x^2-x-10):(3x+5)
B2: Xác định hệ số a, sao cho:
a) (a^3x^3+3ax^2-6x-2a) chia het (x+1)
b) (2x^2-x+2-a) chia het (2x-1)
\(\frac{x^4+x^3+6x^2+5x+5}{x^2+x+1}=\frac{x^4+x^3+x^2+5x^2+5x+5}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)}{\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^2+5\right)}{x^2+x+1}=x^2+5\)
\(\frac{x^4+x^3+2x^2+x+1}{x^2+x+1}=\frac{x^4+x^3+x^2+x^2+x+1}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^2+x+1}=\frac{\left(x^2+x+1\right)\left(x^2+1\right)}{x^2+x+1}=x^2+1\)