TINH : ( 25.3.4.125.6.8) . ( 2+22+23+24+...+2100).(65.111-13.15.17)
(25.3.4.125.6.8).(2+22+23+24+...+2100).(65.111-13.15.17)
GIÚP MK DIỄN GIẢI RA NHA ! THANKS NHÌU !
(1^2+2^2+3^+....+10^2).(65.111-13.15.17)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
(1^2+2^2+3^+....+10^2).(65.111-13.15.17)
=(1^2+2^2+3^2+...+10^2).(65.111-13.555)
=(1^2+2^2+3^2+...+10^2).(65.111+13.5.111)
=(1^2+2^2+3^2+...+10^2).(65.111+65.111)
=(1^2+2^2+3^2+...+10^2).[111.(65-65)
=(1^2+2^2+3^2+...+10^2).(111.0)
=(1^2+2^2+3^2+...+10^2).0
=0
1+2+22+23+24+....2100 = ?
No more comment
Đặt A = \(1+2+2^2+2^3+2^4+....+2^{100}\)
2A = \(2\left(1+2+2^2+2^3+2^4+....+2^{100}\right)\)
= \(2+2^2+2^3+2^4+2^5+...+2^{101}\)
2A - A = \(\left(2+2^2+2^3+2^4+2^5+....+2^{101}\right)-\left(1+2^2+2^3+2^4+...+2^{100}\right)\)
= \(2^{101}-1\)
Nếu bạn bt lm r thì ko nên ra câu hỏi nx đâu .
thu gọn tổng sau
A= 2+22+23+24+...+299+2100
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(\Rightarrow A=2A-A=2^2+2^3+2^4+...+2^{100}+2^{101}-2-2^2-2^3-2^4-...-2^{99}-2^{100}=2^{101}-2\)
(12+22+....+20162) . (65.111-13.15.17)= ?
(1^2+2^2+...+2016^2).(65.111-13.15.17)
=(1^1+2^2+...+2016^2).0
=0
cho s=1+2+22+23+24+...+299 so sánh S với 2100
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
Cho A = 2+22+23+24+...........+2100. Chứng minh A chia hết cho 3.
chứng tỏ A chia hết cho 6 với A= 2+22+23+24+...+2100
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)
Chứng tỏ A chia hết cho 6 với A = 2 + 22+23+24+...+2100
\(A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+6.2^2+...+6.2^{98}\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)