Những câu hỏi liên quan
PA
Xem chi tiết
AZ
7 tháng 2 2020 lúc 16:04

Ta có: \(a+b+c=1\) nên ta được \(1+b-a>0\Rightarrow\frac{a}{1+b-a}>0\)

Ta dễ dàng có thể thấy được là: \(1-\left(a-b\right)^2\le1\) do đó ta có:

\(\frac{a}{1+b-a}\ge\frac{a\left[1-\left(a-b\right)^2\right]}{1+b-a}=a\left(1+a-b\right)\)

Tương tự như trên:

\(\frac{b}{1+c-b}\ge b\left(1+b-c\right);\frac{c}{1+a-b}\ge c\left(1+b-a\right)\)

Cộng theo vế các BĐT trên ta được: \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge a\left(1+a-b\right)+b\left(1+b-c\right)+c\left(1+c-a\right)\)

Bài sẽ hoàn tất nếu chỉ ra được: \(a\left(1+a-b\right)+b\left(1+b-c\right)+c\left(1+c-a\right)\ge1\)

Hay: \(a+b+c+a^2+b^2+c^2-\left(ab+bc+ac\right)\ge1\)

Ta thấy: \(a^2+b^2+c^2\ge ab+bc+ac\) (luôn đúng)

Vậy bđt được cm

(Không chắc)

Bình luận (0)
 Khách vãng lai đã xóa
H24
8 tháng 2 2020 lúc 6:46

Băng god quá, ganh hong lại:

\(VT\ge\frac{\left(a+b+c\right)^2}{\left(a+ab-a^2\right)+\left(b+bc-b^2\right)+\left(c+ca-c^2\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)+\left(ab+bc+ca-a^2-b^2-c^2\right)}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=1\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TK
31 tháng 7 2019 lúc 19:53

1. BĐT ban đầu

<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)

<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)

Áp dụng BĐT buniacoxki dang phân thức 

=> BĐT cần CM

<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)

<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng 

=> BĐT được CM

Bình luận (0)
PQ
31 tháng 7 2019 lúc 21:15

2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)

ko mất tính tổng quát giả sử \(a\ge b\ge c\)

Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)

=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

Bình luận (0)
TK
31 tháng 7 2019 lúc 21:46

Bạn @Diệu Linh@ làm nhầm dòng 5 rồi nhé

2, BĐT ban đầu 

<=> \(\left(1-\frac{1}{1+a+b}\right)+\left(1-\frac{1}{1+b+c}\right)+\left(1-\frac{1}{1+a+c}\right)\ge2\)

<=> \(\frac{\left(a+b\right)^2}{a+b+\left(a+b\right)^2}+\frac{\left(b+c\right)^2}{b+c+\left(b+c\right)^2}+\frac{\left(c+a\right)^2}{c+a+\left(c+a\right)^2}\ge2\)

Dùng BĐT buniacoxki dạng phân thức ở VT 

\(VT\ge\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)+\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}\)

Mà \(a+b+c\le ab+bc+ac\)

=> \(VT\ge\frac{4\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)+2\left(a^2+b^2+c^2+ab+bc+ac\right)}=\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=2\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

Bình luận (0)
0D
Xem chi tiết
AP
Xem chi tiết
PD
26 tháng 5 2019 lúc 23:35

a) Dùng (a+b)2≥4ab
Chia hai vế cho a+b ( vì ab khác 0)
Ta có a+b≥\(\frac{4ab}{a+b}\) (Chuyển ab sang a+b) ta có
\(\frac{a+b}{ab}\)\(\frac{4}{a+b}\) <=> \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\frac{4}{a+b}\)

Bình luận (0)
ZN
Xem chi tiết
NQ
20 tháng 2 2022 lúc 19:30

ta có \(\frac{a}{1+b-a}+a\left(1+b-a\right)\ge2a\)hay \(\frac{a}{1+b-a}\ge a\left(1+a-b\right)=a\left(2a+c\right)\)

tương tự ta sẽ có :

\(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge2a^2+2b^2+2c^2+ab+ac+bc\)

\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a^2+b^2+c^2+2ab+2bc+2ac\right)\ge\frac{1}{2}\left(a+b+c\right)^2+\frac{1}{2}\left(a+b+c\right)^2\)

\(\ge\left(a+b+c\right)^2=1\)

vậy ta  có điều phải chứng minh

dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NQ
23 tháng 2 2022 lúc 22:28

vì bạn muốn làm bằng BDT Bunhia nên mình làm cách đó nhé : 

ta có : \(\left[a\left(1+b-a\right)+b\left(1+c-b\right)+c\left(1+a-c\right)\right]\left(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\right)\)

\(\ge\left(a+b+c\right)^2=1\) ( áp dụng Bunhia ) 

nên ta có : \(VT\ge\frac{1}{a\left(1+b-a\right)+b\left(1+c-b\right)+c\left(1+a-c\right)}=\frac{1}{a\left(2b+c\right)+b\left(2c+a\right)+c\left(2a+c\right)}\)

\(\ge\frac{1}{3\left(ab+bc+ca\right)}\) mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

nên ta có : \(VT\ge\frac{1}{3\times\frac{1}{3}}=1=VP\) vậy ta có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
PK
20 tháng 2 2022 lúc 21:01

vjhvbg

Bình luận (0)
 Khách vãng lai đã xóa
MC
Xem chi tiết
GL

Ta có

\(A=\left(a-b+c\right)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)=3+\left(\frac{a}{c}+\frac{c}{a}\right)-\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{b}{c}+\frac{c}{b}\right)\)

áp dụng bđt Cauchy ta có

\(A\ge3+2-2-2=1\)(đpcm)

Dấu "=" xảy ra khi a=b=c=1

Bình luận (0)
AN
7 tháng 6 2019 lúc 12:45

\(\left(a-b+c\right)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)\ge1\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c+a\right)\ge0\)(đúng)

Vậy bài toán được chứng minh

Bình luận (0)
NK
11 tháng 6 2019 lúc 13:55

em làm chi tiết bài anh ali nha!

BĐT \(\Leftrightarrow\left(a-b\right)\left(\frac{1}{a}-\frac{1}{b}\right)+\frac{\left(a-b\right)}{c}+c\left(\frac{1}{a}-\frac{1}{b}\right)+1\ge1\)

\(\Leftrightarrow\left(a-b\right)\left(\frac{1}{a}-\frac{1}{b}\right)+\frac{\left(a-b\right)}{c}+c\left(\frac{1}{a}-\frac{1}{b}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\frac{b-a}{ab}\right)+\frac{\left(a-b\right)}{c}+c\left(\frac{b-a}{ab}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)-c\left(\frac{a-b}{ab}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}-\frac{c}{ab}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left[\left(\frac{1}{a}-\frac{c}{ab}\right)+\left(\frac{1}{c}-\frac{1}{b}\right)\right]\ge0\)

\(\Leftrightarrow\left(a-b\right)\left[\frac{b-c}{ab}+\frac{b-c}{bc}\right]\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)\left(b-c\right)}{b}\left(\frac{1}{a}+\frac{1}{c}\right)=\frac{\left(a-b\right)\left(b-c\right)\left(c+a\right)}{abc}\ge0\)

BĐT tới đây đúng, ta có đpcm.

Bình luận (0)
PM
Xem chi tiết
TP
23 tháng 11 2019 lúc 18:33

Áp dụng BĐT Cauchy-Schwarz :

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)(1)

Áp dụng BĐT quen thuộc \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) :

\(\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\)(2)

Từ (1) và (2) ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
AH
31 tháng 7 2019 lúc 21:18

Lời giải:

Ta thấy:

\(\text{VT}=\frac{c^2}{2ab^2c^2+c^2}+\frac{a^2}{2bc^2a^2+a^2}+\frac{b^2}{2ca^2b^2+b^2}\)

Áp dụng BĐT Bunhiacopxky:

\(\text{VT}(2ab^2c^2+c^2+2bc^2a^2+a^2+2ca^2b^2+b^2)\geq (c+a+b)^2\)

\(\Leftrightarrow \text{VT}\geq \frac{(a+b+c)^2}{2abc(ab+bc+ac)+a^2+b^2+c^2}(*)\)

Áp dụng BĐT Am-GM:

\(3=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq 1\)

\(\Rightarrow 2abc(ab+bc+ac)\leq 2(ab+bc+ac)\)

\(\Rightarrow \frac{(a+b+c)^2}{2abc(ab+bc+ac)+a^2+b^2+c^2}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)+a^2+b^2+c^2}=1(**)\)

Từ \((*); (**)\Rightarrow \text{VT}\geq 1\)

Ta có đpcm. Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (0)
AH
31 tháng 7 2019 lúc 21:22

Cách khác bằng AM-GM:

\(\text{VT}=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)(1)\)

Áp dụng BĐT AM-GM:

\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)

\(\leq \frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^2a^4}}=\frac{2}{3}(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2})\)

\(\leq \frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}(a+b+c)=2(2)\)

Từ \((1);(2)\Rightarrow \text{VT}\geq 3-2=1\) (đpcm)

Bình luận (0)
NM
31 tháng 7 2019 lúc 17:20

dùng bđt bunhia nha

Bình luận (0)
DN
Xem chi tiết
NM
27 tháng 11 2019 lúc 21:24

Cách : AM - GM :

\(VT=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)\left(1\right)\)

Áp dụng BĐT AM - GM :

\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)

\(\le\frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^aa^4}}=\frac{2}{3}\left(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}\right)\)

\(\le\frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}\left(a+b+c\right)=2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ge3-2=1\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa