Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
CH
Xem chi tiết
CH
26 tháng 3 2017 lúc 14:37

Giải giúp mình với

Bình luận (0)
PH
Xem chi tiết
TH
7 tháng 4 2018 lúc 19:38

Đặt: (a;b;c;d)→(2016;x;y;2015)(a;b;c;d)→(2016;x;y;2015)

Phương trình trở thành:

∑ab+c=2∑ab+c=2

Đây chính là bất đẳng thức NesbitNesbit 4 biến.

Suy ra x=2015;y=2016x=2015;y=2016.

Bình luận (0)
H24
7 tháng 4 2018 lúc 19:38

Đặt: (a; b; c; d) --> (2016; x; y; 2015)

Phương trình trở thành: \(\text{∑}\frac{a}{b+c}=2\)

=> x = 2015; y = 2016

Bình luận (0)
KG
Xem chi tiết
NV
Xem chi tiết
TA
28 tháng 4 2016 lúc 19:40

Cậu xem đề có còn gì nữa không ạ ? 

Bình luận (0)
DD
Xem chi tiết
DD
2 tháng 4 2016 lúc 19:48

ai giúp với đáp án là x=2015;y=2016 cách giải làm sao

Bình luận (0)
ML
Xem chi tiết
TQ
18 tháng 4 2017 lúc 22:16

mk mà đúng thì nhớ k cho mk nh bạn giải như vầy nè

Với x;y dương ta có:F=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\left(\frac{a}{b+c}+\frac{c}{d+a}\right)+\left(\frac{b}{c+d}+\frac{d}{a+b}\right)\)

=\(\frac{a\left(a+d\right)+c\left(b+c\right)}{\left(a+d\right)\left(b+c\right)}\)+\(\frac{b\left(a+b\right)+d\left(d+c\right)}{\left(a+b\right)\left(d+c\right)}\)\(\ge\)\(\frac{a^2+c^2+ad+bc}{\frac{1}{4}\left(a+b+c+d\right)^2}\)+\(\frac{b^2+d^2+ab+cd}{\frac{1}{4}\left(a+b+c+d\right)^2}\)

   =\(\frac{4\left(a^2+b^2+c^2+d^2+ab+ad+bc+cd\right)}{^{\left(a+b+c+d\right)^2}}\)                                                        (áp dụng bđt xy\(\le\frac{1}{4}\left(x+y\right)^2\))mặt khác có 2(\(a^2 +b^2+c^2+d^2+ab+ac+bc+cd\))-\(\left(a+b+c+d\right)^2\)=\(a^2+b^2+c^2+d^2-2ac-2bd\)=\(\left(a-c\right)^2+\left(b-d\right)^2\ge0\)suy ra F\(\ge\)2, dấu ''=''xảy ra khi và chỉ khi a=c ;b=d

Aps dụng với a=2016;b=x;c=y;d=2015ta có\(\frac{2016}{x+y}+\frac{x}{y+2015}+\frac{y}{4031}+\frac{2015}{x+2016}=2\)

nên x; y cần tìm là 2015 và 2016

Bình luận (0)
AN
13 tháng 4 2017 lúc 13:00

Bạn xem đề thử nguyên hay nguyên dương nhé. Nguyên dương thì còn thấy đường làm chứ nguyên thì bó tay.

Bình luận (0)
H24
13 tháng 4 2017 lúc 17:02

Hỏi Ang Google  chưa?

Bình luận (0)
BT
Xem chi tiết
TP
27 tháng 6 2019 lúc 11:58

* Với a, b, c > 0 ta có:

\(A=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)\(=\left(\frac{a}{b+c}+\frac{c}{d+a}\right)+\left(\frac{b}{c+d}+\frac{d}{a+b}\right)\)

\(=\)\(\frac{a\left(a+d\right)+c\left(b+c\right)}{\left(b+c\right)\left(d+a\right)}+\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}\)\(\ge\frac{a^2+c^2+ad+bc}{\frac{1}{4}\left(a+b+c+d\right)^2}+\frac{b^2+d^2+ab+cd}{\frac{1}{4}\left(a+b+c+d\right)^2}\)\(=\frac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\) (Theo bất đẳng thức \(xy\le\frac{1}{4}\left(x+y\right)\))

Mặt khác:

\(2\left(a^2+b^2+c^2+d^2+ab+ad+bc+cd\right)-\left(a+b+c+d\right)^2\)

\(=a^2+b^2+c^2+d^2-2ac-2ad=\left(a-c\right)^2+\left(b-d\right)^2\ge0\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\)

* Áp dụng: \(\frac{2016}{x+y}+\frac{x}{y+2016}+\frac{y}{4031}+\frac{2015}{x+2016}=2\)

\(\Rightarrow\)\(x=2015\), \(y=2016\)

Bình luận (0)
LS
Xem chi tiết
TL
Xem chi tiết
DP
8 tháng 5 2018 lúc 15:42

Phương trình mà lại không có dấu " = " sao giải bạn ơi !

Bình luận (0)
TL
8 tháng 5 2018 lúc 15:43

\(\dfrac{2016}{x+y}+\dfrac{x}{y+2015}+\dfrac{y}{4031}+\dfrac{2105}{x+2016}=2\)

Bình luận (1)