Những câu hỏi liên quan
CV
Xem chi tiết
KR
1 tháng 5 2018 lúc 21:49

Cauchy - Schwarz dạng Engel :

\(\frac{1}{x^2+2xy}+\frac{1}{y^2+2yz}+\frac{1}{z^2+2zx}\ge\frac{\left(1+1+1\right)^2}{\left(x+y+z\right)^2}=9\)

Đẳng thức xảy ra <=> x = y = z = 1/3 

Bình luận (0)
CV
1 tháng 5 2018 lúc 22:02

cảm ơn nha

Bình luận (0)
NA
Xem chi tiết
DN
11 tháng 1 2019 lúc 20:15

Áp  dụng bđt Svac ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)

Bình luận (0)
HN
25 tháng 8 2021 lúc 15:16

gg oaoa

Bình luận (0)
H24
Xem chi tiết
NL
31 tháng 8 2020 lúc 21:50

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
BC
Xem chi tiết
VC
6 tháng 1 2018 lúc 19:56

Áp Dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\left(ĐPCM\right)\)

^_^

Bình luận (0)
H24
6 tháng 1 2018 lúc 20:00

Đặt a = \(x^2+2yz\); b = \(y^2+2xz\); c = \(z^2+2xy\)

\(\Rightarrow\)\(a,b,c>0\)và \(a+b+c=\left(x=y+z\right)^2=1\)

+) C/m : \(\left(a=b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

Hay \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)

\(\Rightarrow\)ĐPCM 

hên xui thôi -_-

Bình luận (0)
H24

CM BĐT phụ:  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)(đúng) 

Áp dụng BĐT trên ta có: 

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\frac{9}{\left(x+y+z\right)^2}=9\)

Bình luận (0)
NN
Xem chi tiết
ZZ
15 tháng 5 2019 lúc 21:37

Áp dụng BĐT Cauchy-schwarz dạng engel,ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\)

\(\Rightarrowđpcm\)

Bình luận (0)
PM
Xem chi tiết
H24
11 tháng 5 2019 lúc 5:30

áp dụng bđt bunhia dạng phân thức ta có

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\)\(\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\) =\(\frac{3^2}{\left(x+y+z\right)^2}\)=\(\frac{9}{1^2}\) =9

(đpcm) vậy dấu =xảy ra khi x=y=z=\(\frac{1}{3}\)

Bình luận (0)
PS
Xem chi tiết
ST
20 tháng 1 2019 lúc 22:07

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}=9\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y+z=1\\x=y=z\end{cases}\Leftrightarrow x=y=z=\frac{1}{3}}\)

Bình luận (0)
PS
13 tháng 2 2019 lúc 21:14

ban chung minh gium mik bdt nha

Bình luận (0)
PS
18 tháng 3 2019 lúc 21:45

sorry minh chua hoc bat dang thuc nay

Bình luận (0)
LY
Xem chi tiết
LF
7 tháng 4 2017 lúc 21:03

vào nút Σ viết lại đề

Bình luận (0)
H24
7 tháng 4 2017 lúc 21:17

Chẳng thấy gì cả ,đau mắt phết

Vô ghi lại đề gấp

Bình luận (0)
VN
Xem chi tiết
LV
26 tháng 6 2021 lúc 20:20

tao đẹp trai thì có gì sai

Bình luận (0)
 Khách vãng lai đã xóa
HM
29 tháng 6 2021 lúc 14:38

bài này mà là âm nhạc???

Bình luận (0)
 Khách vãng lai đã xóa