Những câu hỏi liên quan
HL
Xem chi tiết
NM
Xem chi tiết
SN
24 tháng 1 2017 lúc 10:33

b/ Gọi 3 phần được chia là x;y;z

Vì x;y;z tỉ lệ nghịch với 2,3,5 nên \(\Rightarrow\)2x = 3y = 5z

\(\Rightarrow\)\(\frac{x}{\left(\frac{1}{2}\right)}\)\(\frac{y}{\left(\frac{1}{3}\right)}\)\(\frac{z}{\left(\frac{1}{5}\right)}\)

\(\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}\)

\(\frac{310}{\left(\frac{31}{30}\right)}=300\)

\(\Rightarrow\)x = 150 ; y = 100 ; z = 60

Tương tự làm câu a

Bình luận (0)
NC
Xem chi tiết
NN
24 tháng 11 2017 lúc 13:13

a)

Gọi 3 phần của số 6200 lần lượt là a, b, c.

Theo đè ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\)\(a+b+c=6200\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{6200}{10}=620\)

\(\dfrac{a}{2}=620\Rightarrow a=620.2=1240\)

\(\dfrac{b}{3}=620\Rightarrow b=620.3=1860\)

\(\dfrac{c}{5}=620\Rightarrow c=620.5=3100\)

Vậy số 6200 được chia thành 3 phần lần lượt là 1240, 1860, 3100.

b)

Gọi 3 phần của số 6200 lần lượt là a, b, c.

Theo đè ta có:

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)\(a+b+c=6200\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{6200}{\dfrac{31}{30}}=6000\)

\(\dfrac{a}{\dfrac{1}{2}}=6000\Rightarrow a=6000.\dfrac{1}{2}=3000\)

\(\dfrac{b}{\dfrac{1}{3}}=6000\Rightarrow b=6000.\dfrac{1}{3}=2000\)

\(\dfrac{c}{\dfrac{1}{5}}=6000\Rightarrow c=6000.\dfrac{1}{5}=1200\)

Vậy số 6200 được chia thành 3 phần lần lượt là 3000, 2000, 1200.

Bình luận (0)
BH
24 tháng 11 2017 lúc 12:57

toán lớp mấy z?bài mấy?

Bình luận (2)
LD
Xem chi tiết
HS
24 tháng 3 2020 lúc 19:17

a) Gọi x,y,z là 3 số theo thứ tự tỉ lệ thuận với 2,3,5

Ta có : \(x:y:z=2:3:5\) và x + y + z = 620

hay \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và x + y + z = 620

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{620}{10}=62\)

=> \(\hept{\begin{cases}\frac{x}{2}=62\\\frac{y}{3}=62\\\frac{z}{5}=62\end{cases}}\Rightarrow\hept{\begin{cases}x=124\\y=186\\z=310\end{cases}}\)

b) Gọi a,b,c là 3 số tỉ lệ nghịch với \(2,3,5\)

Ta có : \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}\)và  a + b + c = 620

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{620}{\frac{31}{30}}=600\)

=> \(\hept{\begin{cases}\frac{a}{\frac{1}{2}}=600\\\frac{b}{\frac{1}{3}}=600\\\frac{c}{\frac{1}{5}}=600\end{cases}}\Rightarrow\hept{\begin{cases}a=300\\b=200\\c=120\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
VI

a) Gọi ba số là \(a;b;c\left(a;b;c\ne0\right)\). Vì tổng của 3 số là 620 \(\Leftrightarrow a+b+c=620\)

Vì ba số tỉ lệ thuận với \(2;3;5\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\). Áp dụng t/c dãy tỉ số bằng nhau

Ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{620}{10}=62\). Từ đó ta có :

\(a=62.2=124\)          \(b=64.3=192\)          \(c=62.5=310\)

b) Gọi ba số là \(x;y;z\left(x;y;z\ne0\right)\). Vì tổng của 3 số là 620 \(\Leftrightarrow a+b+c=620\)

Vì ba số tỉ lệ nghịch với \(2;3;5\Rightarrow2x=3y=5z\Leftrightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\). Áp dụng t/c dãy tỉ số bằng nhau

Ta có \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{x+y+z}{\frac{15}{30}+\frac{10}{30}+\frac{6}{30}}=\frac{620}{\frac{31}{30}}=600\)

\(\Leftrightarrow x=620.\frac{1}{2}=310\)          \(\Leftrightarrow y=620.\frac{1}{3}=\frac{620}{3}\)        \(\Leftrightarrow z=620.\frac{1}{5}=124\)

 
Bình luận (0)
 Khách vãng lai đã xóa
LD
20 tháng 3 2020 lúc 21:30

bn ơi phải là 600 nhân chứ sao 620

Bình luận (0)
 Khách vãng lai đã xóa
PM
Xem chi tiết
NL
Xem chi tiết
AP
Xem chi tiết
NT
22 tháng 12 2021 lúc 20:50

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)

Do đó: a=62; b=63; c=155

Bình luận (0)
NM
22 tháng 12 2021 lúc 21:11

Gọi 3 phần là a,b,c(a,b,c>0)

a, Áp dụng tc dtsbn:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\\ \Rightarrow\left\{{}\begin{matrix}a=62\\b=93\\c=155\end{matrix}\right.\)

b, Áp dụng tc dtsbn:

\(2a=3b=5c\Rightarrow\dfrac{2a}{30}=\dfrac{3b}{30}=\dfrac{5c}{30}\Rightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{6}=\dfrac{a+b+c}{15+10+6}=\dfrac{310}{31}=10\\ \Rightarrow\left\{{}\begin{matrix}a=150\\b=100\\c=60\end{matrix}\right.\)

Bình luận (0)
TT
Xem chi tiết
NN
22 tháng 11 2017 lúc 22:00

a) Gọi 3 phần đó lần lượt là a, b, c.

Theo đề ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\)\(a+b+c=310\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)

\(\dfrac{a}{2}=31\Rightarrow a=31.2=62\)

\(\dfrac{b}{3}=31\Rightarrow b=31.3=93\)

\(\dfrac{c}{5}=31\Rightarrow c=31.5=155\)

Vậy chia số 310 thành 3 phần lần lượt là 62, 93, 155

b) Gọi 3 phần đó lần lượt là a, b, c.

Theo đề ta có:

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)\(a+b+c=310\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{310}{\dfrac{31}{30}}=300\)

\(\dfrac{a}{\dfrac{1}{2}}=300\Rightarrow a=300.\dfrac{1}{2}=150\)

\(\dfrac{b}{\dfrac{1}{3}}=300\Rightarrow b=300.\dfrac{1}{3}=100\)

\(\dfrac{c}{\dfrac{1}{5}}=300\Rightarrow c=300.\dfrac{1}{5}=60\)

Vậy chia số 310 thành 3 phần lần lượt là 150, 100, 60

Bình luận (1)