Violympic toán 7

TT

Chia số 310 thành 3 phần:

a)Tỉ lệ thuận với 2,3,5

b)Tỉ lệ nghịch với 2,3,5

NN
22 tháng 11 2017 lúc 22:00

a) Gọi 3 phần đó lần lượt là a, b, c.

Theo đề ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\)\(a+b+c=310\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)

\(\dfrac{a}{2}=31\Rightarrow a=31.2=62\)

\(\dfrac{b}{3}=31\Rightarrow b=31.3=93\)

\(\dfrac{c}{5}=31\Rightarrow c=31.5=155\)

Vậy chia số 310 thành 3 phần lần lượt là 62, 93, 155

b) Gọi 3 phần đó lần lượt là a, b, c.

Theo đề ta có:

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)\(a+b+c=310\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{310}{\dfrac{31}{30}}=300\)

\(\dfrac{a}{\dfrac{1}{2}}=300\Rightarrow a=300.\dfrac{1}{2}=150\)

\(\dfrac{b}{\dfrac{1}{3}}=300\Rightarrow b=300.\dfrac{1}{3}=100\)

\(\dfrac{c}{\dfrac{1}{5}}=300\Rightarrow c=300.\dfrac{1}{5}=60\)

Vậy chia số 310 thành 3 phần lần lượt là 150, 100, 60

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
NC
Xem chi tiết
LH
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
YC
Xem chi tiết
GC
Xem chi tiết
YC
Xem chi tiết
TK
Xem chi tiết