GPT:
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}-3\sqrt{3}x=6\sqrt{3}\)
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}=3\sqrt{3}\left(x+2\right)\)
Ta có:
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}\)
\(=\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{75}{4}}+\sqrt{\left(2x-1\right)^2+3\left(x+2\right)^2}+\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{3}{4}\left(4x+3\right)^2}\)
\(\ge\sqrt{\frac{75}{4}}+\sqrt{3\left(x+2\right)^2}+\sqrt{\frac{3}{4}\left(4x+3\right)^2}\)
\(=\frac{5\sqrt{3}}{2}+\sqrt{3}\left(x+2\right)+\frac{\sqrt{3}\left(4x+3\right)}{2}=3\sqrt{3}\left(x+2\right)\)
Dấu = xảy ra khi ....
Giải pt sau đây
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}-3\sqrt{3}x=6\sqrt{3}\)
Giải PT sau áp dụng bất đẳng thức
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}-3\sqrt{3}x=6\sqrt{3}\)
Tính giá trị nhỏ nhất của
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+17}+x3\sqrt{3}\)
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+17}+3x\sqrt{3}\)
Tách thành các bình phương dưới căn sau đó tìm chặn đc nhé
Bạn nào làm đc thì 3 tick
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
Giải các phương trình sau:
a) \(\sqrt {6{x^2} + 13x + 13} = 2x + 4\)
b) \(\sqrt {2{x^2} + 5x + 3} = - 3 - x\)
c) \(\sqrt {3{x^2} - 17x + 23} = x - 3\)
d) \(\sqrt { - {x^2} + 2x + 4} = x - 2\)
a) \(\sqrt {6{x^2} + 13x + 13} = 2x + 4\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}6{x^2} + 13x + 13 = 4{x^2} + 16x + 16\\ \Leftrightarrow 2{x^2} - 3x - 3 = 0\end{array}\)
\( \Leftrightarrow x = \frac{{3 - \sqrt {33} }}{4}\) hoặc \(x = \frac{{3 + \sqrt {33} }}{4}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị \(x = \frac{{3 - \sqrt {33} }}{4}\) và \(x = \frac{{3 + \sqrt {33} }}{4}\) đều thỏa mãn
Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{3 - \sqrt {33} }}{4};\frac{{3 + \sqrt {33} }}{4}} \right\}\)
b) \(\sqrt {2{x^2} + 5x + 3} = - 3 - x\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 5x + 3 = 9 + 6x + {x^2}\\ \Leftrightarrow {x^2} - x - 6 = 0\end{array}\)
\( \Leftrightarrow x = - 2\) hoặc \(x = 3\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn
Vậy phương trình vô nghiệm
c) \(\sqrt {3{x^2} - 17x + 23} = x - 3\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}3{x^2} - 17x + 23 = {x^2} - 6x + 9\\ \Leftrightarrow 2{x^2} - 11x + 14 = 0\end{array}\)
\( \Leftrightarrow x = 2\) hoặc \(x = \frac{7}{2}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy \(x = \frac{7}{2}\) thỏa mãn
Vậy nghiệm của phương trình là \(x = \frac{7}{2}\)
d) \(\sqrt { - {x^2} + 2x + 4} = x - 2\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l} - {x^2} + 2x + 4 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 6x = 0\end{array}\)
\( \Leftrightarrow x = 0\) hoặc \(x = 3\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=3 thỏa mãn
Vậy nghiệm của phương trình là x=3
1. cho x, y, x >0 và x + y + z =< \(\frac{3}{2}\)
CMR : \(\sqrt{\left(X^2+\frac{1}{X^2}\right)}+\sqrt{Y^2+\frac{1}{Y^2}}+\sqrt{Z^2+\frac{1}{Z^2}}\)LỚN HƠN HOẶC BẰNG \(\frac{3}{2}\sqrt{17}\)
2. TÌM MAX : \(B=3-2x+\sqrt{\left(5-x^2+9x\right)}\)
3. Tìm min : \(M=\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}+3\sqrt{3x}\)
Giải phương trình: \(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}.\left(x+5\right)\)
giải phương trình
a) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-\sqrt{2x-1}}=4\)
b) \(4x^2+3x+3=4x\sqrt{x+3}+2\sqrt{2x-1}\)
c) \(\sqrt{x-4}+\sqrt{6-x}=x^2-11x+27\)
d) \(\sqrt{13x^2-6x+10}+\sqrt{5x^2-13x+\frac{17}{2}}+\sqrt{17x^2-48x+36}=\frac{1}{2}\left(36x-8x^2-21\right)\)
e) \(\sqrt{\frac{6}{3-x}}+\sqrt{\frac{8}{2-x}}=6\)