cho S= 25n+1+23n+1+1 với n là số nguyên dương
CMR S chia hết cho 7
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng:
101n+1-101nchia hết cho 100 (với n\(\in\) N)
25n+1-25n chia hết cho 100 với mọi số tự nhiên n.
n2(n-1)-2n(n-1) chia hết cho 6 với mọi số nguyên n
a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100
c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)
vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3
Mà(2, 3) = 1
⇒n(n-1)(n-2) chia hết cho 2.3 = 6
a) Ta có: \(101^{n+1}-101^n\)
\(=101^n\left(101-1\right)\)
\(=100\cdot101^n⋮100\)
b) Ta có: \(25^{n+1}-25^n\)
\(=25^n\left(25-1\right)\)
\(=25^{n-1}\cdot24⋮100\)
Chứng minh:
a) 25 n + 1 – 25 n chia hết cho 100 với mọi số tự nhiên n.
b) n 2 (n - 1) - 2n(n - 1) chia hết cho 6 với mọi số nguyên n.
Cho S= 22n+1+23n-1+1 với n là số nguyên dương. CMR: S chia hết cho 7
Với n=1
\(S=2^3+2^2+1=13\) không chia hết cho 7
Bạn kiểm tra lại đề xem
Gọi S(n) là tổng của các chữ số của số nguyên dương n. Hãy tìm số nguyên dương n nhỏ nhất sao cho: S(n) và S(n+1) đều chia hết cho 7
dễ thấy để S(n) và S(n+1) đều chia hết cho 1 số thì đuôi của n kết thúc bằng các số 9.
giả sử n có x số 9 cuối(ta tìm x nhỏ nhất)
khi đó n có dạng a 99...9 (x số 9)
=> n+1=b00...0 ( x+1 số 0) với b=a+1
do S(n) ≡ S(n+1) (mod 7) => a+9x ≡ b (mod 7) => 9x ≡ 1 (mod 7)
=> x=4
=> n=a9999
mà S(n) chia hết cho 7 => a=6 => n=69999 là nhỏ nhất thỏa mãn :D
Cho S là tập hợp các số nguyên dương n, \(n=x^2+3y^2\)với x, y là các số nguyên. CMR:
1) Nếu a,b thuộc S thì ab thuộc S
2) Nếu n thuộc S; n chia hết cho 2 thì n chia hết cho 4 và n/4 thuộc S
Chứng minh rằng với mọi số nguyên n thì số
A= n(n+2)(25n2-1) chia hết cho 24
đây là cách giải của mk,
NHỚ TK NHA
CÁC BẠN LÀM ĐƯỢC CÂU NÀO THÌ LÀM , KO BẮT BUỘC LÀM CẢ NHÉ. MÌNH CẢM ƠN TRƯỚC!
Bài 1: Cho số nguyên x sao cho x chia cho 7 dư 2. Chứng tỏ rằng 2x + 3 chia hết 7.
Bài 2: 1) Chứng minh rằng 20 + 21 + 22 + 23 + …. + 25n-3 + 25n-2 + 25n-1 chia hết cho 31 với n là số nguyên dương bất kì.
2) Hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố và là hai số lẻ liên tiếp. Chứng minh rằng số tự nhiên lớn hơn 4 và nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.
Bài 3: Cho tam giác ABC có = 80 độ. Điểm D nằm giữa B và C sao cho = 20 độ. Trên nửa mặt phẳng chứa B bờ AC, vẽ tia Ax sao cho = 25 độ , tia này cắt CB ở E. 1) Chứng tỏ rằng E nằm giữa D và C. 2) Tính 3) Xác định vị trí của tia Ay nằm giữa hai tia AB và AC sao cho
Bài 4. 1) Tìm các số tự nhiên a, b thỏa mãn (2014a + 1)(2014a + 2) = 3b + 5
bài 3 ::: toán 6 có tam giác OwO
mà góc gì = 80 độ z ?
Chứng minh biểu thức S = n 3 n + 2 2 + n + 1 n 3 − 5 n + 1 − 2 n − 1 chia hết cho 120, với n là số nguyên.
Ta có:
S = n n 4 + 5 n 3 + 5 n 2 − 5 n − 6 = n [ n 2 − 1 n 2 + 6 + 5 n n 2 − 1 ] = n ( n 2 − 1 ) ( n 2 + 5 n + 6 ) = n ( n − 1 ) ( n + 1 ) ( n + 2 ) ( n + 3 ) = ( n − 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )
Ta có S là tích của 5 số nguyên tự nhiên liên tiếp chia hết cho 5! nên chia hết cho 120.
1. Tìm số tự nhiên n sao cho :
a, 4n - 5 chia hết cho 13
b, 5n + 1 chia hết cho 7
c, 25n + 3 chia hết cho 53
a,
4n - 5 \(⋮\)13
=> 4n - 5 + 13 \(⋮\)13
=> 4n + 8 \(⋮\)13
=> 4.(n+2)\(⋮\)13
=> n + 2 \(⋮\)13
=> n +2 = 13k ( k\(\in\)N*)
=> n = 13k - 2
vậy: n = 13k - 2 ( k\(\in\)N*)
b, 5n + 1 \(⋮\)7
=> 5n + 1 + 14 \(⋮\)7
=> 5n + 15 \(⋮\)7
=> 5. ( n+3) \(⋮\)7
=> n + 3 \(⋮\)7
=> n+3 = 7k ( k\(\in\)N*)
=> n = 7k - 3
vậy: n = 7k - 3 ( k\(\in\)N*)
c, 25n + 3 \(⋮\)53
phần c thì mk chịu. bạn tk mk nha. 2 phần kia đúng 100%
a. n = 4
b. n = 5
c. n = bạn viết nhầm đề
Nhiều bài thế bạn
Làm cái này mỏi tay lắm
Xin lỗi nha