Những câu hỏi liên quan
TL
Xem chi tiết
NT
8 tháng 1 2022 lúc 14:46

a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)

\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)

\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)

b: \(2x^2-5x+2=0\)

=>(x-2)(2x-1)=0

=>x=1/2

Thay x=1/2 vào P, ta được:

\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)

 

Bình luận (0)
H24
Xem chi tiết
HN
15 tháng 1 2017 lúc 19:05

đáp án là 69876

Bình luận (0)
H24
15 tháng 1 2017 lúc 19:15

69876 đó bạn mình chắc chắn 100$

Bình luận (0)
H24
15 tháng 1 2017 lúc 19:15

69876

Bình luận (0)
CL
Xem chi tiết
LK
Xem chi tiết
HT
Xem chi tiết
PC
Xem chi tiết
AH
4 tháng 1 2023 lúc 19:13

Lời giải:

Ta thấy: $x^2\geq 0$ với mọi $x$ nên $x^2+9+2019\geq 9+2019=2028$

$\Rightarrow A=\sqrt{x^2+9+2019}\geq \sqrt{2028}$

Vậy GTNN của $A$ là $\sqrt{2028}$ khi $x=0$

Bình luận (0)
H24
Xem chi tiết
DL
11 tháng 2 2018 lúc 15:09

\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn

Bình luận (0)
H24
11 tháng 2 2018 lúc 20:37

cảm ơn cậu giúp mk câu c với ạ

Bình luận (0)
MA
Xem chi tiết
H24
30 tháng 12 2021 lúc 14:09

hình bị lỗi 

Bình luận (0)
BN
30 tháng 12 2021 lúc 14:10

bị lỗi rồi bạn

 

Bình luận (0)
ND
Xem chi tiết
TA
19 tháng 3 2023 lúc 17:50

a) Vì với mọi giá trị nguyên của x nên

Dấu “=” xảy ra khi x2 = 0 hay x = 0.

Vậy A đạt giá trị nhỏ nhất 2 021 tại x = 0.

b) Vì với mọi giá trị nguyên của x nên với mọi giá trị nguyên của x.

Vì với mọi giá trị nguyên của x nên với mọi giá trị nguyên của x.

Do đó với mọi giá trị nguyên của x.

Suy ra với mọi giá trị nguyên của x.

Dấu “=” xảy ra khi x22 = 0 và x20 = 0 hay x = 0.

Vậy B đạt giá trị lớn nhất bằng 2 022 khi x = 0. 

Bình luận (0)