Tìm nghiệm nguyên (x;y) của phương trình:
\(2y^2+x-2y+5=xy\)
cho đa thức f(x)=(m-2).x+2.m-3
tìm giá trị của m khi f(x) có nghiệm nguyên, tìm nghiệm nguyên đó.
Cho đa thức f(x)=(m-2)x+2m-3
a) Tìm giá trị của m khi f(x) có ngiệm là -4
b)Tìm giá trị của m khi f(x) có nghiệm nguyên, tìm nghiệm nguyên đó
a, Khi $f(x)$ có nghiệm là $-4$ thì ta suy ra
$f(-4)=0$ hay $(m-2).(-4)+2m-3=0$
$⇔-2m=-5$
$⇔m=\dfrac{5}{2}$
b, Khi $f(x)$ có nghiệm nguyên thì tức là
$f(x)=0;x∈Z$
hay $(m-2)x+2m-3=0$
$⇔(m-2)x=3-2m$
với $m=2$ thì ta suy ra $0=1$ loại
$m \neq 2$ suy ra $x=\dfrac{3-2m}{m-2}$
hay $x=\dfrac{-1-2(m-2)}{m-2}=\dfrac{-1}{m-2}-2$
Mà $x∈Z;-2∈Z$
Nên $\dfrac{-1}{m-2}∈Z$
Hay $m-2∈Ư(-1)$
suy ra \(m-2∈{-1;1}\)
nên $m=1$ hoặc $m=3$
Với $m=1$ suy ra $x=-3$
$m=3$ suy ra $x=-3$
Vậy $m=1$ hoặc $m=3$ thì đa thức cho có nghiệm nguyên $x=-3$
1) Chứng minh rằng: \(x^3-7y=51\) không có nghiệm nguyên
2) Tìm nghiệm nguyên của phương trình \(x^2-5y^2=27\)
3) Tìm nghiệm nguyên dương
a) \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
b)\(\dfrac{1}{x}+\dfrac{1}{y}=z\)
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).
1. tìm nghiệm nguyên của phương trình:
p(x + y) = xy và p nguyên tố
2. tìm nghiệm nguyên của phương trình:
a. x + y + z + 9 = xyz
b. x + y + 1 = xyz
Tìm số nguyên a để phương trình: \(x^2+2ax-4a+13=0\) có nghiệm nguyên. tìm nghiệm nguyên đó
Nếu phương trình \(x^2+2ax-4a+13=0\) có nghiệm nguyên thì nghiệm đó phải là ước của 13. Như vậy, các nghiệm nguyên có thể có là: -13; -1; 1; 13.
Với x = - 13, thế vào phương trình ta có: \(\left(-13\right)^2+2a\left(-13\right)-4a+13=0\Rightarrow a=\frac{91}{15}\) (Loại do cần a nguyên)
Với x = -1, ta có: \(\left(-1\right)^2+2a\left(-1\right)-4a+13=0\Rightarrow a=\frac{7}{3}\) (Loại)
Với x = 1, ta có: \(1+2a-4a+13=0\Rightarrow a=7\) (Chọn)
Với x =13, ta có: \(\left(13\right)^2+2a.13-4a+13=0\Rightarrow a=\frac{91}{11}\)(Loại)
Vậy a = 7, phương trình có nghiệm nguyên là 1 và -15.
Chúc em học và thi thật tốt :))
Tìm m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên (m+1)x + 2y = m-1 và m²x - y = m² + 2m
cho phương trình:
mx - 3 = 2x =2m
1) tìm m để phương trình vô nghiệm, phương trình có nghiệm
2) khi phương trình có nghiệm duy nhất :
a) tìm m nguyên để phương trình có nghiệm nguyên
b) tìm m để phương trình có nghiệm x>0
c) tìm m để phương trình có nghiệm x<0
cho phương trình \(m^2\)x +6= 4x+3m a) giải pt khi m=3 b) tìm m để pt có nghiệm x= 1,5 c) tìm m để pt có nghiệm vô nghiệm vô số nghiệm d) tìm m nguyên để pt trên có nghiệm
a) Thay m=3 vào pt ta được:
\(9x+6=4x+9\Leftrightarrow x=\dfrac{3}{5}\)
Vậy...
b) Thay x=-1,5 vào pt ta được:
\(m^2\left(-1,5\right)+6=4.\left(-1,5\right)+3m\)
\(\Leftrightarrow\dfrac{-3}{2}m^2-3m+12=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
Vậy...
c)Pt \(\Leftrightarrow x\left(m^2-4\right)=3m-6\)
Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6\ne0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=-2\)
Để pt có vô số nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6=0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=2\)
d)Để pt có nghiệm \(\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)
\(\Rightarrow x=\dfrac{3m-6}{m^2-4}=\dfrac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{3}{m+2}\)
Để \(x\in Z\Leftrightarrow\dfrac{3}{m+2}\in Z\)
Vì \(m\in Z\Leftrightarrow m+2\in Z\).Để \(\dfrac{3}{m+2}\in Z\Leftrightarrow m+2\inƯ\left(3\right)=\left\{-1;-3;1;3\right\}\)
\(\Leftrightarrow m=\left\{-3;-5;-1;1\right\}\) (tm)
Vậy...
Tìm m nguyên để có nghiệm duy nhất x y thoả mãn x y nguyên
hpt có nghiệm duy nhất <=>\(\dfrac{1}{m}\ne\dfrac{1}{-1}\)
<=>\(m\ne-1\)
Cho đa thức f(x)=(m-2)x+2m-3
a,Tìm nghiệm của f(x) khi m=1
b,tìm giá trị của m khi f(x) có nghiệm là -4
c,tìm giá trị của m khi f(x) có nhiệm nguyên ,tìm nghiệm nguyên đó
a) Thay m=1 vào f(x) ta có :
f(x)=(1-2)x+2.1-3=(-1)x-1=0
(-1)x=1
x=1:(-1)
x=-1
Vậy nghiệm của f(x) là f(-1)
b) ta có f(-4)=(m-2).(-4)+2m-3=0
m.(-4)+8+2m-3=0
-2m+5=0
-2m=-5
m=-5:(-2)
m=5/2
c) mình k hiểu đề