Những câu hỏi liên quan
E3
Xem chi tiết

Giải:

a)  \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\) 

\(\Rightarrow7< \dfrac{x^2}{4}< 10\) 

\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\) 

\(\Rightarrow x^2=36\) 

\(\Rightarrow x=6\) 

b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\) 

 \(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\) 

Từ (1) và (2), ta có:

\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)

Bình luận (2)
ND
Xem chi tiết
HA
Xem chi tiết
CX
25 tháng 5 2017 lúc 13:24

a, Rút gọn :

\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)

\(A=\frac{1\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)

\(A=\frac{x-5+2x+10-2x+10}{\left(x+5\right)\left(x-5\right)}\)

\(A=\frac{x+15}{\left(x+5\right)\left(x-5\right)}\)

Bình luận (0)
DT
25 tháng 5 2017 lúc 13:23

   Đức Hiệp Tùng   Giúp tôi giải toán  Mới nhấtChưa trả lờiCâu hỏi hayCâu hỏi của tôiGửi câu hỏiFA Trả lời 3 Đánh dấu

3 phút trước (13:18)

Kb đi buồn quá

Toán lớp 1
Bình luận (0)
NF
25 tháng 5 2017 lúc 13:24

ê pn sao hay thế

Bình luận (0)
TD
Xem chi tiết
H24
Xem chi tiết
H24
4 tháng 8 2019 lúc 10:07

\(A=\frac{3}{x^4-x^3+x-1}-\frac{1}{x^4+x^3-x-1}-\frac{4}{x^5-x^4+x^3-x^2+x-1}\)

\(=\frac{3}{\left(x-1\right)\left(x^3+1\right)}-\frac{1}{\left(x+1\right)\left(x^3-1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)

\(=\frac{3}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)

\(=\left[\frac{3}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}\right]-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)

\(=\left[\frac{3\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{x^2-x+1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\right]-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)\(=\frac{3x^2+3x+3-x^2+x-1}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)

\(=\frac{2x^2+4x+2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)

\(=\frac{2x^2+4x+2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}-\frac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}\)

\(=\frac{2x^2+4x+2-4x-4}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2x^2-2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}\)

\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2}{x^4+x^2+1}\)

\(\Rightarrow A=\frac{2}{x^4+x^2+1}\left(x\ne\pm1\right)\)

Ta có: \(x^4+x^2+1=\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

Vậy A > 0 với mọi \(x\ne\pm1\)

Bình luận (0)
KC
Xem chi tiết
NT
13 tháng 8 2020 lúc 21:50

Ta có: \(B=\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}+\frac{5-2\sqrt{x}}{x+\sqrt{x}-2}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\frac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-4-\sqrt{x}+1+5-2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

Để \(\frac{A}{B}< 4\) thì \(\frac{A}{B}-4< 0\)

\(\Leftrightarrow\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}-2}{\sqrt{x}+2}-4< 0\)

\(\Leftrightarrow\frac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}-\frac{4\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}< 0\)

\(\Leftrightarrow\frac{4x+8\sqrt{x}-4\left(x-7\sqrt{x}+10\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}< 0\)

\(\Leftrightarrow\frac{4x+8\sqrt{x}-4x+28\sqrt{x}-40}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}< 0\)

\(\Leftrightarrow\frac{36\sqrt{x}-40}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}< 0\)

Trường hợp 1:

\(\left\{{}\begin{matrix}36\sqrt{x}-40< 0\\\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}36\sqrt{x}< 40\\\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-5>0\\\sqrt{x}-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}-2< 0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< \frac{10}{9}\\\left[{}\begin{matrix}\sqrt{x}>5\\\sqrt{x}< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\left(loại\right)\\\left[{}\begin{matrix}x>25\\x< 4\end{matrix}\right.\end{matrix}\right.\)

=> Loại

Trường hợp 2:

Bình luận (0)
IA
Xem chi tiết
EC
13 tháng 8 2020 lúc 21:57

B = \(\frac{\sqrt{x}-2}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}+\frac{5-2\sqrt{x}}{x+\sqrt{x}-2}\)

B = \(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{x-4-\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}}{\sqrt{x}+2}\)

=>\(\frac{A}{B}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}\cdot\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4\sqrt{x}+8}{\sqrt{x}-5}\)

\(\frac{A}{B}< 4\) <=> \(\frac{4\sqrt{x}+8}{\sqrt{x}-5}-4< 0\) <=> \(\frac{4\sqrt{x}+8-4\sqrt{x}+20}{\sqrt{x}-5}< 0\) <=> \(\frac{28}{\sqrt{x}-5}< 0\)

Do 28 > 0 => \(\sqrt{x}-5< 0\) <=> \(\sqrt{x}< 5\) => x < 25 

Do x là số tự nhiên lớn nhất => x = 24

Bình luận (0)
 Khách vãng lai đã xóa
CD
Xem chi tiết
Xem chi tiết
PL
13 tháng 6 2019 lúc 20:40

\(A=x+\left(x+\frac{1}{5}\right)+\left(x+\frac{2}{5}\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{4}{5}\right)\)

\(=5x+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\)

\(=5x+2\)

\(B=5x\)

\(\Rightarrow A>B\)Với \(\forall\)\(x\)

Bình luận (0)
H24
13 tháng 6 2019 lúc 20:45

#)Giải :

\(A=\left[x\right]+\left[1+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)

Thay x = 3,7 vào biểu thức, ta có :

\(A=\left[3,7\right]+\left[3,7+\frac{1}{5}\right]+\left[3,7+\frac{2}{5}\right]+\left[3,7+\frac{3}{5}\right]+\left[3,7+\frac{4}{5}\right]\)

\(A=\left[3,7+3,7+3,7+3,7+3,7\right]+\left[1+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right]\)

\(A=18,5+3\)

\(A=21,5\)

\(B=\left[5x\right]=\left[5\times3,7\right]=18,5\)

Vì 21,5 > 18,5 \(\Rightarrow A>B\)

Bình luận (0)
ZZ
13 tháng 6 2019 lúc 20:51

Phạm Thị Thùy Linh+๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ):Cả 2 bạn đều nhầm chỗ  \(\left[a\right]\) rồi nha.\(\left[a\right]\) tức là phần nguyên của a nghĩa là số nguyên lớn nhất ko vượt quá a.

\(A=\left[x\right]+\left[x+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)

\(=\left[3,7\right]+\left[3,7+\frac{1}{5}\right]+\left[3,7+\frac{2}{5}\right]+\left[3,7+\frac{3}{5}\right]+\left[3,7+\frac{4}{5}\right]\)

\(=3+3+4+4+4\)

\(=18\)

\(B=\left[5x\right]\)

\(B=\left[18,5\right]\)

\(=18\)

Vậy \(A=B\left(=18\right)\)

Bình luận (0)
H24
Xem chi tiết
MA
21 tháng 9 2016 lúc 20:26

\(\frac{7}{4}-x+\frac{4}{3}=\frac{5}{19}\)

\(\Rightarrow\frac{7}{4}-x=\frac{5}{19}-\frac{4}{3}\)

\(\Rightarrow\frac{7}{4}-x=-\frac{61}{57}\)

\(\Rightarrow x=\frac{7}{4}+\frac{61}{57}\)

\(\Rightarrow x=???\)

tíc mình nha

Bình luận (0)