Cho A= \(\frac{x-5}{x-4}\); B= \(\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
a, Tính A khi \(x^2-3x=0\)
b, Rút gọn B
c, Tìm giá trị nguyên của x để P= A.B có giá trị nguyên
a)\(\frac{7}{x}<\frac{x}{4}<\frac{10}{x}\)
b) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\). Chứng tỏ: \(\frac{8}{9}>A>\frac{2}{5}\)
Giải:
a) \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\)
\(\Rightarrow7< \dfrac{x^2}{4}< 10\)
\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6\)
b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2), ta có:
\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)
Cho đa thức
A(x)=\(3x^4-\frac{3}{4}x^3+2x^2-3\)
B(x)=\(8x^4+\frac{1}{5}x^3-9x+\frac{2}{5}\)
Tính A(x)+B(x) ; A(x)-B(x) ; B(x)-A(x)
cho phân thức A=\(\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)
a.rút gọn A
b.tìm x để A=4
a, Rút gọn :
\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{1\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{x-5+2x+10-2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{x+15}{\left(x+5\right)\left(x-5\right)}\)
3 phút trước (13:18)
Kb đi buồn quá
Toán lớp 1\(Cho A=\frac{1}{(x+y)^3}(\frac{1}{x^4+y^4})\) ;\(B=\frac{2}{(x+y)^4}(\frac{1}{x^3}-\frac{1}{y^3})\) :C=\(\frac{2}{(x+y)^5}(\frac{1}{x^2}-\frac{1}{y^2})\) Tính A+B+C \)
Cho \(A=\frac{3}{x^4-x^3+x-1}-\frac{1}{x^4+x^3-x-1}-\frac{4}{x^5-x^4+x^3-x^2+x-1}\)
CMR A là số dương với mọi x thuộc biến xác định của A
\(A=\frac{3}{x^4-x^3+x-1}-\frac{1}{x^4+x^3-x-1}-\frac{4}{x^5-x^4+x^3-x^2+x-1}\)
\(=\frac{3}{\left(x-1\right)\left(x^3+1\right)}-\frac{1}{\left(x+1\right)\left(x^3-1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{3}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\left[\frac{3}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}\right]-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\left[\frac{3\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{x^2-x+1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\right]-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)\(=\frac{3x^2+3x+3-x^2+x-1}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2+4x+2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2+4x+2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}-\frac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2+4x+2-4x-4}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2x^2-2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2}{x^4+x^2+1}\)
\(\Rightarrow A=\frac{2}{x^4+x^2+1}\left(x\ne\pm1\right)\)
Ta có: \(x^4+x^2+1=\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy A > 0 với mọi \(x\ne\pm1\)
Cho \(A=\frac{4\sqrt{x}}{\sqrt{x}-5}\) và \(B=\frac{\sqrt{x}-2}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}+\frac{5-2\sqrt{x}}{x+\sqrt{x}-2}\left(x>0,x\ne1,x\ne25\right)\)
Tìm số tự nhiên x lớn nhất sao cho \(\frac{A}{B}< 4\)
Ta có: \(B=\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}+\frac{5-2\sqrt{x}}{x+\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\frac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-4-\sqrt{x}+1+5-2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
Để \(\frac{A}{B}< 4\) thì \(\frac{A}{B}-4< 0\)
\(\Leftrightarrow\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}-2}{\sqrt{x}+2}-4< 0\)
\(\Leftrightarrow\frac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}-\frac{4\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}< 0\)
\(\Leftrightarrow\frac{4x+8\sqrt{x}-4\left(x-7\sqrt{x}+10\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}< 0\)
\(\Leftrightarrow\frac{4x+8\sqrt{x}-4x+28\sqrt{x}-40}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}< 0\)
\(\Leftrightarrow\frac{36\sqrt{x}-40}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}< 0\)
Trường hợp 1:
\(\left\{{}\begin{matrix}36\sqrt{x}-40< 0\\\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}36\sqrt{x}< 40\\\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-5>0\\\sqrt{x}-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}-2< 0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< \frac{10}{9}\\\left[{}\begin{matrix}\sqrt{x}>5\\\sqrt{x}< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\left(loại\right)\\\left[{}\begin{matrix}x>25\\x< 4\end{matrix}\right.\end{matrix}\right.\)
=> Loại
Trường hợp 2:
Cho \(A=\frac{4\sqrt{x}}{\sqrt{x}-5}\) và \(B=\frac{\sqrt{x}-2}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}+\frac{5-2\sqrt{x}}{x+\sqrt{x}-2}\left(x>0,x\ne1,x\ne25\right)\)
Tìm số tự nhiên x lớn nhất sao cho \(\frac{A}{B}< 4\)
B = \(\frac{\sqrt{x}-2}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}+\frac{5-2\sqrt{x}}{x+\sqrt{x}-2}\)
B = \(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{x-4-\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}}{\sqrt{x}+2}\)
=>\(\frac{A}{B}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}\cdot\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4\sqrt{x}+8}{\sqrt{x}-5}\)
\(\frac{A}{B}< 4\) <=> \(\frac{4\sqrt{x}+8}{\sqrt{x}-5}-4< 0\) <=> \(\frac{4\sqrt{x}+8-4\sqrt{x}+20}{\sqrt{x}-5}< 0\) <=> \(\frac{28}{\sqrt{x}-5}< 0\)
Do 28 > 0 => \(\sqrt{x}-5< 0\) <=> \(\sqrt{x}< 5\) => x < 25
Do x là số tự nhiên lớn nhất => x = 24
A= \(\frac{4\sqrt{x}}{\sqrt{x}-5}\): \(\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}+\frac{5-2\sqrt{x}}{x+\sqrt{x}-2}\right)\)
a) Rút gọn A
b) Tính A tại x=81
c) Tìm x sao cho A<4
Cho x = 3,7.So sánh :
\(A=\left[x\right]+\left[x+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
và B = [5x]
\(A=x+\left(x+\frac{1}{5}\right)+\left(x+\frac{2}{5}\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{4}{5}\right)\)
\(=5x+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\)
\(=5x+2\)
\(B=5x\)
\(\Rightarrow A>B\)Với \(\forall\)\(x\)
#)Giải :
\(A=\left[x\right]+\left[1+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
Thay x = 3,7 vào biểu thức, ta có :
\(A=\left[3,7\right]+\left[3,7+\frac{1}{5}\right]+\left[3,7+\frac{2}{5}\right]+\left[3,7+\frac{3}{5}\right]+\left[3,7+\frac{4}{5}\right]\)
\(A=\left[3,7+3,7+3,7+3,7+3,7\right]+\left[1+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right]\)
\(A=18,5+3\)
\(A=21,5\)
\(B=\left[5x\right]=\left[5\times3,7\right]=18,5\)
Vì 21,5 > 18,5 \(\Rightarrow A>B\)
Phạm Thị Thùy Linh+๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ):Cả 2 bạn đều nhầm chỗ \(\left[a\right]\) rồi nha.\(\left[a\right]\) tức là phần nguyên của a nghĩa là số nguyên lớn nhất ko vượt quá a.
\(A=\left[x\right]+\left[x+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
\(=\left[3,7\right]+\left[3,7+\frac{1}{5}\right]+\left[3,7+\frac{2}{5}\right]+\left[3,7+\frac{3}{5}\right]+\left[3,7+\frac{4}{5}\right]\)
\(=3+3+4+4+4\)
\(=18\)
\(B=\left[5x\right]\)
\(B=\left[18,5\right]\)
\(=18\)
Vậy \(A=B\left(=18\right)\)
tìm x:
a) \(\frac{7}{4}-x+.\frac{4}{3}=\frac{5}{19}\) b) \(x.\frac{1}{2}+\frac{3}{2}.x=\frac{4}{5}\)
giúp với ai đúng mik k cho
\(\frac{7}{4}-x+\frac{4}{3}=\frac{5}{19}\)
\(\Rightarrow\frac{7}{4}-x=\frac{5}{19}-\frac{4}{3}\)
\(\Rightarrow\frac{7}{4}-x=-\frac{61}{57}\)
\(\Rightarrow x=\frac{7}{4}+\frac{61}{57}\)
\(\Rightarrow x=???\)
tíc mình nha