Những câu hỏi liên quan
TT
Xem chi tiết
DT
19 tháng 10 2019 lúc 21:07

\(A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

A=1+y/x+z/x+x/y+1+z/y+x/z+y/z+1

A=3+(x/y+y/x)+(x/z+z/x)+(y/z+z/y)

với x,y,z > 0 Áp dụng BDT cauchy ta có

\(\hept{\begin{cases}\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\\\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\\\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\end{cases}}\)

=> A\(\ge\)3+2+2+2=9

( Dấu "=" xảy ra <=> x=y=z )

Vậy GTNN của A là 9 <=> x=y=z

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LF
11 tháng 12 2016 lúc 10:37

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

Bình luận (0)
PC
Xem chi tiết
TT
1 tháng 2 2018 lúc 17:23

đề bài như này chớ

\(\frac{x}{1+y^2}\)\(+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)

\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\)

ttu vt\(\ge x+y+z-\left(\frac{xy+yz+xz}{2}\right)=3-\frac{\left(xy+xz+yz\right)}{2}\ge3-\frac{\frac{\left(x+y+z\right)^2}{3}}{2}=3-\frac{3}{2}=\frac{3}{2}\)

dau = xay ra khi x=y=z=1

Bình luận (0)
PQ
1 tháng 2 2018 lúc 17:07

Ta có :

\(\frac{x}{1}+y^2+\frac{y}{1}+z^2+\frac{z}{1}+x^2\)

\(\Rightarrow\)\(\left(\frac{x}{1}+\frac{y}{1}+\frac{z}{1}\right)+\left(x^2+y^2+z^2\right)\ge3\)

\(\Rightarrow\)\(3+\left(x^2+y^2+z^2\right)\ge3\)

\(\Rightarrow\)\(x^2+y^2+z^2\ge0\)

Dấu "=" xảy ra khi \(x=y=z=0\)

Vậy gái trị nhỏ nhất của \(P=\frac{x}{1}+y^2+\frac{y}{1}+z^2+\frac{z}{1}+x^2=0\)

Bình luận (0)
HL
Xem chi tiết
VL
Xem chi tiết
AH
23 tháng 9 2021 lúc 18:07

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$

Tương tự:

$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$

$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$

Cộng theo vế:

$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)

Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$

Bình luận (1)
NY
Xem chi tiết
TV
Xem chi tiết
TV
30 tháng 8 2021 lúc 14:12

thêm x2+y2+z2=1 nha

Bình luận (0)
 Khách vãng lai đã xóa
ZJ
30 tháng 8 2021 lúc 14:28

thêm x2 + y+ z= 1 nha

      HT nha vinh

Bình luận (0)
 Khách vãng lai đã xóa
GF
Xem chi tiết
NH
Xem chi tiết