Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PT
Xem chi tiết
NT
6 tháng 12 2021 lúc 22:34

b: Để phương trình vô nghiệm thì x-2=0

hay x=2

Để phương trình có nghiệm thì x-2<>0

hay x<>2

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 6 2019 lúc 3:55

m2x + 6 = 4x + 3m

⇔ m2.x – 4x = 3m – 6

⇔ (m2 – 4).x = 3m – 6 (2)

+ Xét m2 – 4 ≠ 0 ⇔ m ≠ ±2, phương trình (2) có nghiệm duy nhất:

Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

+ Xét m2 – 4 = 0 ⇔ m = ±2

     ● Với m = 2, pt (2) ⇔ 0x = 0 , phương trình có vô số nghiệm

     ● Với m = –2, pt (2) ⇔ 0x = –12, phương trình vô nghiệm.

Kết luận:

     + m = 2, phương trình có vô số nghiệm

     + m = –2, phương trình vô nghiệm

     + m ≠ ±2, phương trình có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 11 2019 lúc 17:16

Giải sách bài tập Toán 10 | Giải sbt Toán 10

 Kết luận:

    Với m > 0 phương trình có nghiệm là x = 2m.

    Với m = 0 phương trình có nghiệm là mọi số thực không âm.

    Với m < 0 phương trình vô nghiệm.

Bình luận (0)
PH
Xem chi tiết
NC
Xem chi tiết
H24
16 tháng 2 2023 lúc 3:18

Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 9 2019 lúc 3:55

Điều kiện của bất phương trình là x ≥ 0

    Nếu m ≤ 1 thì m - 1 ≤ 0, bất phương trình đã cho nghiệm đúng với mọi x ≥ 0

    Nếu m > 1 thì m – 1 > 0, bất phương trình đã cho tương đương với √x ≤ 0 ⇔ x = 0

    Vậy: Nếu m ≤ 1 thì tập nghiệm của bất phương trình là [0; +∞)

     Nếu m > 1 thì tập nghiệm của bất phương trình là {0}

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 9 2017 lúc 16:44

m(x – 2) = 3x + 1

⇔ mx – 2m = 3x + 1

⇔ mx – 3x = 1 + 2m

⇔ (m – 3).x = 1 + 2m (1)

     + Xét m – 3 ≠ 0 ⇔ m ≠ 3, phương trình (1) có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

     + Xét m – 3 = 0 ⇔ m = 3, pt (1) ⇔ 0x = 7. Phương trình vô nghiệm.

Kết luận:

+ với m = 3, phương trình vô nghiệm

+ với m ≠ 3, phương trình có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

Bình luận (0)
FA
Xem chi tiết
TT
28 tháng 1 2022 lúc 15:58

\(m\left(x-m\right)\le4x+5.\left(1\right)\\ \Leftrightarrow mx-m^2-4x-5\le0.\\ \Leftrightarrow\left(m-4\right)x\le5+m^2.\circledast\)

+) Nếu \(m-4>0.\Leftrightarrow m>4.\)

Khi \(\circledast\) có nghiệm: \(x\le\dfrac{5+m^2}{m-4}.\)

+) Nếu \(m-4< 0.\Leftrightarrow m< 4.\)

Khi \(\circledast\) có nghiệm: \(x\ge\dfrac{5+m^2}{m-4}.\)

+) Nếu \(m-4=0.\) \(\Leftrightarrow m=4.\)

Thay vào \(\circledast\) ta có: 

\(0x\le5+4^2.\Leftrightarrow0x\le21\) (vô lý).

Kết luận: 

Với \(m>4\) thì (1) có tập nghiệm \(S=\) \((-\infty;\dfrac{5+m^2}{m-4}].\)

Với \(m< 4\) thì (1) có tập nghiệm \(S=\) \([\dfrac{5+m^2}{m-4};+\infty).\)

Với \(m=4\) thì (1) có tập nghiệm \(S=\) \(\phi.\)

 
Bình luận (0)
TC
Xem chi tiết
NC
13 tháng 3 2021 lúc 19:42

Phương trình tương đương

\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)

Nếu m = 0 thì phương trình vô nghiệm

Nếu m ≠ 0 thì S = {m + 2}

Bình luận (0)