CMR : 3n +1 và 3n^3 - 2n^2 + 2n + 2 nguyên tố cùng nhau
Chứng minh rằng n^3+2n và n^4+3n^2+n là 2 số nguyên tố cùng nhau.
Cho tam giác ABC cân tại A (AB=AC).Gọi D, E lần lượt là trung điểm của AB và AC.Gọi K là giao điểm của BE và CD.Chứng minh AK là tia phân giác của góc BAC.
Đề sai nhé, với mọi n khác 1 thì 2 số ko nguyên tố cùng nhau nha
Bài 1: Tìm số nguyên để 2n+3 chia hết cho 3n+6
Bài 2: Chứng minh các số sau nguyên tố cùng nhau:
a, 3n+4 và 2n+3
b,2n+5 và 4n+9
Bạn nào giải đầy đủ sẽ đc 4 tick nha.
Bài 2 :
a ) Gọi ƯCLN của 3n + 4 và 2n + 3 là d .
Ta có : 2n + 3 chia hết cho d .
3n + 4 chia hết cho d .
\(\Rightarrow\) 2n . 3 + 3 . 3 chia hết cho d .
3n . 2 + 4 . 2 chia hết cho d .
\(\Rightarrow\) 6n + 9 chia hết cho d .
6n + 8 chia hết cho d .
\(\Rightarrow\) ( 6n + 9 ) - ( 6n + 8 ) chia hết cho d .
\(\Rightarrow\) 1 chia hết cho d .
\(\Rightarrow\) d = 1
b)Gọi ƯCLN( 2n+5, 4n+9) là d
Ta có: 2n + 5 \(⋮\)d
4n + 9 \(⋮\)d
\(\Rightarrow\)2n + 5 . 2 \(⋮\)d
4n + 9 . 1 \(⋮\)d
\(\Rightarrow\)4n + 10 \(⋮\)d
4n + 9 \(⋮\) d
\(\Rightarrow\left(4n+10\right)-\left(4n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy 2n + 5 và 4n + 9 nguyên tố cùng nhau.
Bài 2
a) Gọi d là ƯCLN (3n+4; 2n+3) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}3n+4⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+4\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+8⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
=> ĐPCM
b) làm tương tự câu a)
cmr các cặp số sau nguyên tố cùng nhau
a/2n+1 & 6n+5
b/3n+2 & 5n+3
Chứng minh rằng : Với n ϵ N, thì các số sau là hai số nguyên tố cùng nhau
a) n+1 và 2n+3
b) n+1 và 3n+4
c) 2n+3 và 4n+8
d) n+3 và 2n+5
LÀM 1 CÂU BẤT KÌ CŨNG ĐƯỢC Ạ
a,
Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)
Các câu sau em biến đổi tương tự
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau:
a, 3n+5 và 2n+3
b, 5n+2 và 7n+3
a)Gọi ƯCLN(3n+5;2n+3)=d
=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d
=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d
=>6n+10-(6n+9) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(3n+5;2n+3)=1
Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau
b)Gọi ƯCLN(5n+2;7n+3)=a
=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a
=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a
=> 35n+15-(35n+14) chia hết cho a
=>1 chia hết cho a hay a=1
Do đó, ƯCLN(5n+2;7n+3)=1
Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau
a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)
\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)
\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau:
a, 3n+5 và 2n+3
b, 5n+2 và 7n+3
a)Gọi UCLN(3n+5;2n+3)=d
Ta có:
[2(3n+5)]-[3(2n+3)] chia hết d
=>[6n+10]-[6n+9] chia hết d
=>1 chia hết d
=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau
b)Gọi UCLN(5n+2;7n+3)=d
Ta có:
[5(7n+3)]-[7(5n+2)] chia hết d
=>[35n+15]-[35n+14] chia hết d
=>1 chia hết d
=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau
Chứng tỏ rằng 3n + 5 và 2n + 3 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
Ai nhanh mk tick luôn
gọi UCLN(2n+3, 3n+5) là d
ta có 2n+5 chia hết cho d => 3(2n+3) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+5 chia hết cho d => 2(3n+5) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+3, 3n+5 ngtố cùng nhau(đpcm)
Bài 1: Rút gọn biểu thức
a, A=|x-1| - (3x+2)
b, B= (5x-2) -| x+1|
c, C= |x+4| -(3-2x)
d, D=(5x+2)-|x-5|
Bài 2: Chứng minh các số sau nguyên tố cùng nhau :
a, 3n+4 và 2n+3
b, 2n+5 và 4n+9
Bài 3: Tìm stn n để các số nguyên tố cùng nhau:
a, 3n+2 và 4n+5
b, 2n+4 và 3n+5
(Bạn nào giải đầy đủ và chi tiết sẽ được 4 tick nha).
Bài 1: Rút gọn biểu thức
a, A=|x-1| - (3x+2)
b, B= (5x-2) -| x+1|
c, C= |x+4| -(3-2x)
d, D=(5x+2)-|x-5|
Bài 2: Chứng minh các số sau nguyên tố cùng nhau :
a, 3n+4 và 2n+3
b, 2n+5 và 4n+9
Bài 3: Tìm stn n để các số nguyên tố cùng nhau:
a, 3n+2 và 4n+5
b, 2n+4 và 3n+5
(Bạn nào giải đầy đủ và chi tiết sẽ được 4 tick nha).