Những câu hỏi liên quan
NN
Xem chi tiết
VM
Xem chi tiết
TM
Xem chi tiết
HT
Xem chi tiết
ND
Xem chi tiết
SG
15 tháng 6 2017 lúc 16:09

Bài này hay phết: Theo mik bạn nên thêm ĐK: x;y;z đồng thời khác 0.

\(2x^3=3y^3=4z^3\\ \)

Bình luận (0)
SG
15 tháng 6 2017 lúc 17:00

Mong đề bài của bạn ko thiếu

Bình luận (0)
SG
15 tháng 6 2017 lúc 17:01

Hình như thiếu ĐK\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\\ \)

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
NL
11 tháng 5 2021 lúc 21:06

Đề bài sai/thiếu

Ví dụ: \(x=y=z=0\) thì \(2x^3=3y^3=4z^3\) nhưng \(\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=0\)

Bình luận (3)
NL
11 tháng 5 2021 lúc 21:19

Nếu thêm điều kiện \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) (với \(x;y;z\ne0\))

Đặt \(2x^3=3y^3=4z^3=k^3\Rightarrow\left\{{}\begin{matrix}x=\dfrac{k}{\sqrt[3]{2}}\\y=\dfrac{k}{\sqrt[3]{3}}\\z=\dfrac{k}{\sqrt[3]{4}}\end{matrix}\right.\)

Thay vào \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\Rightarrow\dfrac{\sqrt[3]{2}}{k}+\dfrac{\sqrt[3]{3}}{k}+\dfrac{\sqrt[3]{4}}{k}=1\)

\(\Rightarrow\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}=k\) 

Lại có:

\(\left\{{}\begin{matrix}2x^3=k^3\Rightarrow2x^2=\dfrac{k^3}{x}\\3y^3=k^3\Rightarrow3y^2=\dfrac{k^3}{y}\\4z^3=k^3\Rightarrow4z^2=\dfrac{k^3}{z}\end{matrix}\right.\) \(\Rightarrow2x^2+3y^2+4z^2=k^3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=k^3\)

\(\Rightarrow\dfrac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=\dfrac{\sqrt[3]{k^3}}{k}=1\)

Bình luận (2)
HP
Xem chi tiết
LP
Xem chi tiết