Cho \(2x^3=3y^3=4z^3\) . Chứng minh: \(\frac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=1\)
Cho \(2x^3=3y^3=4z^3\). Chứng minh rằng: \(\frac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=1\)
Cho \(2x^3=3y^3=4z^3\)
CHứng minh rằng :\(\frac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=1\)
Cho 2x3=3y3=4z3. Chứng minh rằng \(\frac{\sqrt[3]{2x^2+3y^2+4z^2}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{4}}=1\)
Mong các cao nhân lm giúp e vs ạ
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) . Tìm Min \(\sqrt{\frac{2x^{3}+3y^{2}}{x+4y}}+\sqrt{\frac{2y^{3}+3z^{2}}{y+4z}}+\sqrt{\frac{2z^{3}+3x^{2}}{z+4x}}\)
Cho `2x^3=3y^3=4z^3`
`CMR:(\root{3}{2x^2+3y^2+4z^2})/(\root{3}{2}+\root{3}{3}+\root{3}{4})=1`
Giúp!
\(\hept{\begin{cases}2x^3-y^2+\sqrt[3]{2x^3-3y+1}-\sqrt[3]{y^2+1}=3y\\x^5+x^3y^2+2y^4-yx^4-x^2y^3-y^5-2013\left(x+y\right)=0\end{cases}}\)
Giải các hệ PT:
a) \(\frac{1}{2x-y}+x+3y=\frac{3}{2}\) và \(\frac{4}{2x-y}-5\left(x+3y\right)=-3\)
b) \(3\left(\sqrt{x-1}\right)-\frac{4}{\sqrt{y}-1}=-1\)và \(2\left(\sqrt{x-1}\right)+\frac{3}{\sqrt{y}-1}=5\)
c) \(\frac{1}{x+y}+\sqrt{y-2}=3\)và \(\frac{-2}{x+y}+5\sqrt{y-2}=1\)
d) \(\frac{2}{\sqrt{x}-3}+\frac{1}{\sqrt{y+1}}=\frac{13}{20}\)và \(\frac{5}{\sqrt{x}-3}-\frac{2}{\sqrt{y+1}}=\frac{1}{2}\)
Giải phương trình :
\(a,13x-2\sqrt{x}.\left(3+2y\right)+y^2+1=0\)
\(b,x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
\(c,x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(d,2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)