Những câu hỏi liên quan
PA
Xem chi tiết
TD
25 tháng 4 2020 lúc 10:45

Ta có :

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\left(1+\frac{a+b+c}{a}\right)\left(1+\frac{a+b+c}{b}\right)\left(1+\frac{a+b+c}{c}\right)\)

\(=\left(\frac{2a+b+c}{a}\right)\left(\frac{2b+a+c}{b}\right)\left(\frac{2c+a+b}{c}\right)\)

\(=\left(\frac{a+b}{a}+\frac{a+c}{a}\right)\left(\frac{a+b}{b}+\frac{b+c}{b}\right)\left(\frac{a+c}{c}+\frac{b+c}{c}\right)\)

Áp dụng BĐT Cô-si,ta có :

\(\frac{a+b}{a}+\frac{a+c}{a}\ge2\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}\)

\(\frac{a+b}{b}+\frac{b+c}{b}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{b^2}}\)

\(\frac{a+c}{c}+\frac{b+c}{c}\ge2\sqrt{\frac{\left(a+c\right)\left(b+c\right)}{c^2}}\)

\(\Rightarrow\left(\frac{a+b}{a}+\frac{a+c}{a}\right)\left(\frac{a+b}{b}+\frac{b+c}{b}\right)\left(\frac{a+c}{c}+\frac{b+c}{c}\right)\ge8\sqrt{\frac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{a^2b^2c^2}}\)

\(\ge8\sqrt{\frac{\left[8\sqrt{a^2b^2c^2}\right]^2}{a^2b^2c^2}}=8\sqrt{64}=64\)

Dấu "=" xảy ra khi a = b = c = \(\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
HV
Xem chi tiết
AH
29 tháng 8 2017 lúc 17:02

Sao tự nhiên lại lòi ra số c vậy?

Bình luận (1)
H24
Xem chi tiết
LD
28 tháng 3 2021 lúc 10:26

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

Bình luận (0)
 Khách vãng lai đã xóa
KL
Xem chi tiết
PC
25 tháng 4 2021 lúc 16:50

LG a

(1−a√a1−√a+√a).(1−√a1−a)2=1(1−aa1−a+a).(1−a1−a)2=1 với a≥0a≥0 và a≠1a≠1

Phương pháp giải:

+ Biến đối vế trái thành vế phải ta sẽ có điều cần chứng minh.

+ √A2=|A|A2=|A|. 

+ |A|=A|A|=A    nếu    A≥0A≥0,

    |A|=−A|A|=−A     nếu    A<0A<0.

+ Sử dụng các hằng đẳng thức:

         a2+2ab+b2=(a+b)2a2+2ab+b2=(a+b)2

         a2−b2=(a+b).(a−b)a2−b2=(a+b).(a−b).

         a3−b3=(a−b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2).

Lời giải chi tiết:

Biến đổi vế trái để được vế phải.

Ta có: 

VT=(1−a√a1−√a+√a).(1−√a1−a)2VT=(1−aa1−a+a).(1−a1−a)2

       =(1−(√a)31−√a+√a).(1−√a(1−√a)(1+√a))2=(1−(a)31−a+a).(1−a(1−a)(1+a))2

       =((1−√a)(1+√a+(√a)2)1−√a+√a).(11+√a)2=((1−a)(1+a+(a)2)1−a+a).(11+a)2

       =[(1+√a+(√a)2)+√a].1(1+√a)2=[(1+a+(a)2)+a].1(1+a)2

       =[(1+2√a+(√a)2)].1(1+√a)2=[(1+2a+(a)2)].1(1+a)2

       =(1+√a)2.1(1+√a)2=1=VP=(1+a)2.1(1+a)2=1=VP.

LG b

a+bb2√a2b4a2+2ab+b2=|a|a+bb2a2b4a2+2ab+b2=|a| với a+b>0a+b>0 và b≠0b≠0

Phương pháp giải:

+ Biến đối vế trái thành vế phải ta sẽ có điều cần chứng minh.

+ √A2=|A|A2=|A|. 

+ |A|=A|A|=A    nếu    A≥0A≥0,

    |A|=−A|A|=−A     nếu    A<0A<0.

+ Sử dụng các hằng đẳng thức:

         a2+2ab+b2=(a+b)2a2+2ab+b2=(a+b)2

         a2−b2=(a+b).(a−b)a2−b2=(a+b).(a−b).

         a3−b3=(a−b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2).

Lời giải chi tiết:

Ta có:

VT=a+bb2√a2b4a2+2ab+b2VT=a+bb2a2b4a2+2ab+b2

      =a+bb2√(ab2)2(a+b)2=a+bb2(ab2)2(a+b)2

     =a+bb2√(ab2)2√(a+b)2=a+bb2(ab2)2(a+b)2

     =a+bb2|ab2||a+b|=a+bb2|ab2||a+b|

     =a+bb2.|a|b2a+b=|a|=VP=a+bb2.|a|b2a+b=|a|=VP

Vì a+b>0⇒|a+b|=a+ba+b>0⇒|a+b|=a+b.

Bình luận (0)
 Khách vãng lai đã xóa
PK
23 tháng 5 2021 lúc 21:03

Để học tốt Toán 9 | Giải bài tập Toán 9

Bình luận (0)
 Khách vãng lai đã xóa
PH
29 tháng 5 2021 lúc 21:27

 và làm tiếp.

; với a+b>0 và b≠0, sẽ rút gọn tiếp được kết quả.

Bình luận (0)
 Khách vãng lai đã xóa
HV
Xem chi tiết
PN
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
NT
10 tháng 9 2023 lúc 11:41

a: Khi x=64 thì \(A=\dfrac{2}{8-2}=\dfrac{2}{6}=\dfrac{1}{3}\)

b: \(P=B:A\)

\(=\dfrac{3\sqrt{x}+\sqrt{x}-2-2\left(\sqrt{x}+2\right)}{x-4}:\dfrac{2}{\sqrt{x}-2}\)

\(=\dfrac{4\sqrt{x}-2-2\sqrt{x}-4}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{2\sqrt{x}-6}{2\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

c: P<0

=>căn x-3<0

=>0<=x<9

mà x nguyên và x<>4

nên \(x\in\left\{0;1;2;3;5;6;7;8\right\}\)

Bình luận (0)
HK
Xem chi tiết

Bài 1 : Viết các đa thức sau dưới dạng lập phương của một tổng hoặc lập phương của một hiệu

a,8x3+12x2y+6xy2+y38x3+12x2y+6xy2+y3

= (2x)3 + 3.(2x)2.y + 3.2x.y2 + y3

= ( 2x + y )3
b,x3+3x2+3x+1x3+3x2+3x+1

= x3 + 3.x2.1 + 3.x.12 + 13

=(x + 1)3

c, x3−3x2+2x−1x3−3x2+2x−1

= x3 - 3.x2.1+ 3.x.12 - 13

= (x - 1)3

d,27+27y2+9y4+y6

= 33 + 3.32.y2 + 3.3.y4 + (y2)3

= ( 3 + y2 ) 3

Bình luận (0)
 Khách vãng lai đã xóa
LH
2 tháng 10 2021 lúc 15:23

1111x99

Bình luận (0)
 Khách vãng lai đã xóa
BA
2 tháng 10 2021 lúc 15:27
Năm nhuận có bao nhiêu ngày
Bình luận (0)
 Khách vãng lai đã xóa