Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DP
Xem chi tiết
PA
15 tháng 11 2016 lúc 10:29

\(A=\frac{3}{4x^2-4x+5}\)

\(=\frac{3}{4x^2-4x+1+4}\)

\(=\frac{3}{\left(2x-1\right)^2+4}\)

\(\left(2x-1\right)^2\ge0\)

\(\Rightarrow\left(2x-1\right)^2+4\ge4\)

\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)

\(MaxA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

Bình luận (0)
VT
15 tháng 11 2016 lúc 10:32

Đặt \(A=\frac{3}{4x^2-4x+5}\)

Biến đổi : \(4x^2-4x+5\)

\(=\left[\left(2x\right)^2-2.2x.1+1^2\right]+4\)

\(=\left(2x-1\right)^2+4\)

Ta có : \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow\left(2x-1\right)^2+4\ge4\)

\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)

\(\Rightarrow A\le\frac{3}{4}\)

Dấu " = " xảy ra khi và chỉ khi \(2x-1=0\)

\(2x=1\)

\(x=\frac{1}{2}\)

Vậy \(Max_A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

 

 

Bình luận (0)
TP
Xem chi tiết
TD
23 tháng 10 2018 lúc 21:12

Ta có :

\(M=\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\)

Ta thấy \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow\left(2x-1\right)^2+4\ge4\)

Do đó  \(\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)

( So sánh 2 phân thức cùng tử , tử và mẫu đều dương )

Vậy \(MaxM=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

P/s : Tự làm lại đầy đủ nhé . Mình có bớt 1 số chỗ không cần thiết lắm .

Bình luận (0)
KW
Xem chi tiết
TM
30 tháng 6 2017 lúc 17:03

\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)

Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2

Vậy gtnn của biểu thức là -8 khi x=2

đề yêu cầu tìm cả max và min hay chỉ 1 là được?

Bình luận (0)
NL
2 tháng 12 2017 lúc 13:37

Tấm vải thứ 2 dài là :
                                 85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
                                 85 + 120 + 120 = 325 ( m )
                                                     Đ/S : 325 m

chúc cậu hok tốt @_@

Bình luận (0)
H24
6 tháng 6 2019 lúc 5:26

Trl

        Min = - 8 khi x = - 2

Hok tốt

Bình luận (0)
HN
Xem chi tiết
LA
1 tháng 4 2019 lúc 21:22

Để B đạt GTLN thì \(4x^2+4x+3\) phải đạt GTNN

Ta có: \(4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\ge2\forall x\)

=> GTNN của 4x2 +4x +3 = 2 tại x = -1/2

=> GTLN của B = 3/2 tại x = -1/2

=.= hk tốt!!

Bình luận (0)
PV
Xem chi tiết
KN
29 tháng 11 2019 lúc 19:01

\(B=\frac{4-4x^2+4x}{5}=\frac{-\left(4x^2-4x-4\right)}{5}\)

\(=\frac{-\left(4x^2-4x+1\right)+5}{5}\)

\(=\frac{-\left(2x-1\right)^2+5}{5}\)

Ta có: \(-\left(2x-1\right)^2\le0\)

\(\Rightarrow-\left(2x-1\right)^2+5\le5\)

\(\Rightarrow\frac{-\left(2x-1\right)^2+5}{5}\ge1\)

Vậy \(B_{min}=1\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TV
6 tháng 1 2021 lúc 21:19

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

Bình luận (0)
MN
Xem chi tiết
NK
3 tháng 1 2016 lúc 21:26

-8 bạn à 

có cần giải chi tiết ko

 Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.

Bình luận (0)
HT
Xem chi tiết
CM
10 tháng 2 2019 lúc 16:42

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

Bình luận (0)
LH
Xem chi tiết
NL
23 tháng 6 2019 lúc 19:36

\(B=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\Rightarrow B_{max}=\frac{3}{4}\) khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

2/ Xem lại đề bài, đề bài này thì ko có max, 12 ở mẫu là dấu + thì may ra làm được

Bình luận (1)