Những câu hỏi liên quan
MH
Xem chi tiết
PM
Xem chi tiết
H24
19 tháng 8 2019 lúc 8:58

Dự đoán x = 2/5; y =4/7, giúp ta có được lời giải:D

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

Đến đây đánh giá cô si + kết hợp giả thiết là xong:D

Bình luận (0)
NH
Xem chi tiết
TT
1 tháng 6 2015 lúc 11:24

sorry lam lon

M=(x^2+y^2/xy=x^2/xy+y^2/xy=x^2/4xy +x^2/4xy +x^2/4xy+x^2/4xy + 4y^2/4xy

Do  x,y > 0 nên áp dụng cô si cho 5 số dương ta có :

M  ≥ 5 . Căn 5 của (x^2/4xy . x^2/4xy .x^2/4xy.4y^2/4xy)=5.căn 5 của (x^3/256y^3)   (*)

Mặt khác do x ≥ 2y =>x^3 ≥ 8y^3 nên từ (*) ta có :

≥ 5.can 5 cua (8y^3/256y^3)=5.can 5 cua (1/32)=5.1/2 =5/2

Dau " ≥ " khi 

{x^2/4xy = 4y^2/4xy

{x^3=8y^3

=>x  ≥  2y

Vậy :​x  ≥ 2y

Bình luận (0)
LP
Xem chi tiết
DH
3 tháng 6 2018 lúc 10:07

\(M=\frac{2x^2+4xy+2y^2+8xy}{x+y}=\frac{2\left(x^2+2xy+y^2\right)+2\cdot4xy}{x+y}=\frac{2\left(x+y\right)^2+2\cdot1}{x+y}\)

\(=2\left(x+y\right)+\frac{2}{x+y}>=2\sqrt{2\left(x+y\right)\cdot\frac{2}{x+y}}=2\cdot\sqrt{4}=2\cdot2=4\)(bđt cosi)

dấu = xảy ra khi x=y=\(\frac{1}{2}\)

vậy min M là 4 khi \(x=y=\frac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
NL
12 tháng 8 2021 lúc 16:40

\(2=3\sqrt{xy}+2\sqrt{xz}\le\dfrac{3}{2}\left(x+y\right)+x+z\)

\(\Rightarrow5x+3y+2z\ge4\)

\(A=5\left(\dfrac{xy}{z}+\dfrac{xz}{y}\right)+3\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+2\left(\dfrac{xz}{y}+\dfrac{yz}{x}\right)\)

\(A\ge5.2x+3.2y+2.2z=2\left(5x+3y+2z\right)\ge8\)

\(A_{min}=8\) khi \(x=y=z=\dfrac{2}{5}\)

Bình luận (0)
LT
Xem chi tiết
NL
Xem chi tiết
DH
18 tháng 4 2019 lúc 20:28

\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)

     \(=\frac{10x}{5}+\frac{5y}{5}+\frac{30}{x}+\frac{5}{y}\)

     \(=\frac{6x}{5}+\frac{4x}{5}+\frac{y}{5}+\frac{4y}{5}+\frac{30}{x}+\frac{5}{y}\)

      \(=\left(\frac{6x}{5}+\frac{30}{x}\right)+\left(\frac{4x}{5}+\frac{4y}{5}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)

Áp dụng bất đẳng thức cô-si cho hai số không âm

\(\frac{6x}{5}+\frac{30}{x}\ge2\sqrt{\frac{6x}{5}.\frac{30}{x}}=2\sqrt{36}=2.6=12\) (1)

\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\) (2)

Theo đề \(x+y\ge10\) suy ra

\(\frac{4x}{5}+\frac{4y}{5}=\frac{4\left(x+y\right)}{5}\ge\frac{4.10}{5}=8\) (2)

Cộng (1); (2) ; (3) vế theo vế ta được:

\(\frac{6x}{5}+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}+\frac{4x}{5}+\frac{4y}{5}\ge12+2+8=22\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{6x}{5}=\frac{30}{x}\\\frac{y}{5}=\frac{5}{y}\end{cases}\Rightarrow\hept{\begin{cases}x^2=25\\y^2=25\end{cases}}}\)

Vì x;y dương nên (x;y) = (5;5)

Bình luận (0)
KS
18 tháng 4 2019 lúc 20:32

\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)

\(\Leftrightarrow P=0,8\left(x+y\right)+\left(1,2x+\frac{30}{x}\right)+\left(0,2y+\frac{5}{y}\right)\)

Áp dụng BĐT AM-GM ta có:

\(P\ge0,8\left(x+y\right)+2.\sqrt{1,2x.\frac{30}{x}}+2.\sqrt{0,2y.\frac{5}{y}}=8+12+2=22\)

Dấu " = " xảy ra <=> x=y=5

Vậy \(P_{min}=22\Leftrightarrow x=y=5\)

Bình luận (0)
NK
Xem chi tiết
HL
Xem chi tiết
ZO
28 tháng 4 2016 lúc 17:11

ko làm đâu

Bình luận (0)
TB
28 tháng 4 2016 lúc 18:05

Huhu

tui

moi

hoc

lop

5

chua

bit

lam

lop

9

kho

qua

hihi

Bình luận (0)
SL
28 tháng 4 2016 lúc 18:12



 

 
 HONG BIET LAM 
?
?
?
?
?
?
?
?
?
?
??

??

??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

Bình luận (0)