Tìm x, biết:
a)√x-2=0
b)√(x-4)^2=2x+1
Tìm x biết a) x(x-25)=0 b)2x(x-4)-x(2x-1)=-28 c)x^2 -5x=0 d)(x-2)^2-(x+1)(x+3)=-7 e)(3x+5).(4-3x)=0 f)x^2-1/4=0
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
5A. Tìm x, biết:
a) 8x(x - 2017) - 2x + 4034 = 0; b)
x + x2
2 8
= 0;
c) 4 - x = 2( x -4)2; d) (x2 + 1)(x - 2) + 2x = 4.
5B. Tìm x, biết:
a) x4 -16x2 =0; c) x8 + 36x4 =0;
b) (x - 5)3 - x + 5 = 0; d) 5(x - 2 ) - x2 + 4 = 0.
a: \(8x\left(x-2017\right)-2x+4034=0\)
\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Tìm x, biết:
a) 8x(x - 2017) - 2x + 4034 = 0; b) x 2 + x 2 8 = 0;
c) 4 - x = 2 ( x - 4 ) 2 ; d) ( x 2 + 1)(x - 2) + 2x = 4.
Tìm x, biết:
a) 3x(x - 1) + x - 1 = 0;
b) (x - 2)( x 2 + 2x + 7) + 2( x 2 - 4) - 5(x - 2) = 0;
c) ( 2 x - 1 ) 2 - 25 = 0;
d) x 3 + 27 + (x + 3)(x - 9) = 0.
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
Bài 2: Tìm x, biết: a) (x + 2)^2 – 2(x + 2)(x – 5) = 0. b) 2x^2 + 3x – 5 = 0. c) x + 2 ^2 x 2 + 2x^3 = 0. d) (3x-1)^2-4(x+5)^2=0
a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
tìm x biết
a) (5x-1)(2x-1/3)=0
b) (x^2+1)(x-4)=0
c) 2x^2 -1/3x=0
d) (4/5)^5.x=(4/5)^7
e)Tìm x thuộc z để A=x+5/x-2 có giá trị nguyên
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
Tìm x biết
a)x^5+x+1=0
b)x^4-2x^3-x^2-2x-1=0
Câu a thêm bớt x^2
a/ \(x^5-x^2+x^2+x+1\)
\(=x^2.\left(x^3-1\right)+x^2+x+1\)
Đến đây có nhân tử chung r làm tiếp nhé
Tìm x biết:
a) x 2 + 3 x = 0 b) x ( 2x − 1) + 4x − 2=0 c) ( x 2 + 2 x )2 − 2 x 2 − 4 x = 3
a. x( x+ 3)= 0
⇔ x= 0 hoặc x+ 3= 0
⇔ x= 0 x = -3
b. x( 2x− 1)+ 2( 2x− 1) =0
⇔ ( 2x− 1)(x+ 2) =0
⇔ 2x− 1 =0 hoặc x+ 2 =0
⇔ 2x =1 x = -2
⇔ x =\(\dfrac{1}{2}\) x = -2
Tìm x biết
A)1/2x.(x^2-4)=0
B)(x+2)^2-(x-2)(x+2)=0
Câu a ko rõ đề bài lắm
\(b.\left(x+2\right)\left(x+2-x+2\right)=0\)
\(\left(x+2\right).4=0\)
\(\Rightarrow x+2=0\)
\(x=-2\)
Cho biểu thức: A ={ (4x/x+2 )+ (8x² / 4-x²)} : {(x-1/x²-2x)-(2/x)} với x = ±2,x≠0,x≠3. a) Rút gọn A. b) Tính giá trị của 4 biết x^{2}+2x=15 c) Tìm x biết |A|> A
a: \(A=\left[\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right)\right]:\left[\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right]\)
\(=\left(\dfrac{4x}{x+2}-\dfrac{8x^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2}{x}\right)\)
\(=\dfrac{4x\left(x-2\right)-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2\left(x-2\right)}{x\left(x-2\right)}\)
\(=\dfrac{-8x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-2\right)}{x-1-2x+4}\)
\(=\dfrac{-8x^2}{\left(x+2\right)\cdot\left(-x+3\right)}\)
\(=\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}\)
b: \(x^2+2x=15\)
=>\(x^2+2x-15=0\)
=>(x+5)(x-3)=0
=>\(\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Thay x=-5 vào A, ta được:
\(A=\dfrac{8\cdot\left(-5\right)^2}{\left(-5-3\right)\left(-5+2\right)}=\dfrac{8\cdot25}{\left(-8\right)\cdot\left(-3\right)}=\dfrac{25}{3}\)
c: |A|>A
=>A<0
=>\(\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}< 0\)
=>(x-3)(x+2)<0
TH1: \(\left\{{}\begin{matrix}x-3>0\\x+2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 3\\x>-2\end{matrix}\right.\)
=>-2<x<3
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}-2< x< 3\\x\notin\left\{0;2\right\}\end{matrix}\right.\)