Những câu hỏi liên quan
NN
Xem chi tiết
TK
8 tháng 11 2021 lúc 20:00

= x^2+4xy+4y^2 -4z^2

= (x+2y)^2 -4z^2

=(x+2y-2z)(x+2y+2z)

Bình luận (0)
NT
8 tháng 11 2021 lúc 20:00

\(=\left(x+2y-2z\right)\left(x+2y+2z\right)\)

Bình luận (0)
H24
8 tháng 11 2021 lúc 20:03

=x2+4xy+4y2-4z2

=(x+2y)2-4z2

=(x+2y-4z)(x+2y+4z)

chắc chắn đúng

Bình luận (0)
HN
Xem chi tiết
TP
4 tháng 1 2022 lúc 12:44

c

Bình luận (3)
DT
4 tháng 1 2022 lúc 12:49

c

Bình luận (1)
TT
Xem chi tiết
NH
Xem chi tiết
PN
19 tháng 12 2020 lúc 20:24

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

Bình luận (0)
PN
19 tháng 12 2020 lúc 20:26

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

Bình luận (0)
VD
Xem chi tiết
HN
Xem chi tiết
AH
15 tháng 9 2021 lúc 21:34

$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$

$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$

$\Leftrightarrow x=3; y=-2$

---------------------

$B=9x^2+y^2+2z^2-18x+4z-6y+30$

$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$

$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$

$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$

$\Leftrightarrow x=1; y=3; z=-1$

Bình luận (0)
AH
15 tháng 9 2021 lúc 21:40

$C=x^2+y^2+z^2-xy-yz-xz+3$

$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$

$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$

$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$

$\Rightarrow C\geq 3$

Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$

$\Leftrihgtarrow x=y=z$

--------------------------------------

$D=5x^2+2y^2+4xy-2x+4y+2021$

$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$

$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$

$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$

$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$

Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$

$\Leftrightarrow x=1; y=-2$

Bình luận (0)
AH
15 tháng 9 2021 lúc 21:42

$E=x^2-2x+4y^2+4y+2014$

$=(x^2-2x+1)+(4y^2+4y+1)+2012$

$=(x-1)^2+(2y+1)^2+2012$

$\geq 2012$

Vậy $E_{\min}=2012$. Giá trị này đạt tại $x-1=2y+1=0$

$\Leftrightarrow x=1; y=\frac{-1}{2}$

----------------------

$F=5x^2+5y^2+8xy+2y-2x+30$

$=4(x^2+2xy+y^2)+x^2+y^2+2y-2x+30$

$=4(x+y)^2+(x^2-2x+1)+(y^2+2y+1)+28$

$=4(x+y)^2+(x-1)^2+(y+1)^2+28\geq 28$

Vậy $F_{\min}=28$. Giá trị này đạt tại $x+y=x-1=y+1=0$

$\Leftrightarrow x=1; y=-1$

Bình luận (0)
NM
Xem chi tiết
H24
1 tháng 10 2021 lúc 9:45

`a)x^3-8x^2+16x`

`=x(x^2-8x+16)`

`=x(x-4)^2`

`b)x^2+4y^2+2x-4y-4xy-24`

`=(x-2y)^2+2(x-2y)-24`

`=(x-2y)^2-4(x-2y)+6(x-2y)-24`

`=(x-2y-4)(x-2y+6)`

`c)x^4+x^3-x^2-2x-2`

`=x^4-2x^2+x^3-2x+x^2-2`

`=x^2(x^2-2)+x(x^2-2)+x^2-2`

`=(x^2-2)(x^2+x+1)`

Bình luận (0)
MN
Xem chi tiết
H24
Xem chi tiết
NT
8 tháng 1 2022 lúc 20:05

a: \(=4xy\left(1-5x^2y\right)\)

b: \(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

c: \(=x\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(x+y\right)\)

d: \(=\left(x+2y\right)^2-36=\left(x+2y+6\right)\left(x+2y-6\right)\)

Bình luận (0)