Cho A= 342 + 240 + 340 + 242. Tìm số tận cùng của A
Tìm chữ số tận cùng của: 7242
Ta có :
\(7^{242}=7^{240}.7^2\)
\(=7^{4.60}.49\)
\(=\left(...1\right).\left(...9\right)\)
\(=\left(...9\right)\)
Vậy chữ số tận cùng của \(7^{242}\)là\(9.\)
Tìm chữ số tận cùng của :
7 . 340
12112 + 12513
1010+ 1111+ 1515+ 1616
3⁴ ≡ 1 (mod 10)
⇒ 3⁴⁰ ≡ (3⁴)¹⁰ (mod 10) ≡ 1¹⁰ (mod 10) ≡ 1 (mod 10)
⇒ 7.3⁴⁰ ≡ 7.1 (mod 10) ≡ 7 (mod 10)
Vậy chữ số tận cùng của 7.3⁴⁰ là 7
121³ ≡ 1 (mod 10)
⇒ 121¹² ≡ (121³)⁴ (mod 10) ≡ 1⁴ (mod 10) ≡ 1 (mod 10)
125 ≡ 5 (mod 10)
125³ ≡ 5 (mod 10)
⇒ 125¹² ≡ (125³)⁴ (mod 10) ≡ 5⁴ (mod 10) ≡ 5 (mod 10)
⇒ 125¹³ ≡ 125.125¹² (mod 10) ≡ 5.5 (mod 10) ≡ 5 (mod 10)
⇒ 121¹² + 125¹³ ≡ 1 + 5 (mod 10) ≡ 6 (mod 10)
Vậy chữ số tận cùng của 121¹² + 125¹³ là 6
10¹⁰ ≡ 0 (mod 10)
11¹¹ ≡ 1 (mod 10)
15¹⁵ ≡ 5 (mod 10)
16⁴ ≡ 6 (mod 10)
⇒ 16¹⁶ ≡ (16⁴)⁴ (mod 10) ≡ 6⁴ (mod 10) ≡ 6 (mod 10)
⇒ 10¹⁰ + 11¹¹ + 15¹⁵ + 16¹⁶ ≡ 0 + 1 + 5 + 6 (mod 10) ≡ 2 (mod 10)
Vậy chữ số tận cùng của 10¹⁰ + 11¹¹ + 15¹⁵ + 16¹⁶ là 2
Tìm chữ số tận cùng của 157^240; 268^268; 2023^2022
*) 157²⁴⁰ = [(157⁴)⁵]¹²
157⁴ ≡ 1 (mod 10)
(157⁴)⁵ ≡ 1⁵ (mod 10) ≡ 1 (mod 10)
157²⁴⁰ ≡ [(157⁴)⁵]¹² (mod 10) ≡ 1¹² (mod 10) ≡ 1 (mod 10)
Vậy chữ số tận cùng của 157²⁴⁰ là 1
*) 268²⁶⁸ = [(268⁴)⁵]¹³.268⁸
268⁴ ≡ 6 (mod 10)
(268⁴)⁵ ≡ 6⁵ (mod 10) ≡ 6 (mod 10)
[(268⁴)⁵]¹³ ≡ 6¹³ (mod 10) ≡ 6⁵.6⁸ (mod 10) ≡ 6.6 (mod 10) ≡ 6 (mod 10)
268⁸ ≡ 268⁴ . 268⁴ (mod 10) ≡ 6 . 6 (mod 10) ≡ 6 (mod 10)
268²⁶⁸ ≡ [(268⁴)⁵]¹³.268⁸ (mod 10) ≡ 6.6 (mod 10) ≡ 6 (mod 10)
Vậy chữ số tận cùng của 268²⁶⁸ là 6
*) 2023²⁰²² = 2023²⁰⁰⁰.2023²²
2023³ ≡ 7 (mod 10)
(2023³)⁵ ≡ 7⁵ (mod 10) ≡ 7 (mod 10)
2023¹⁶ ≡ (2023³)⁵ . 2023 (mod 10) ≡ 7.2023 (mod 10) ≡ 1 (mod 10)
2023²⁰⁰⁰ ≡ (2023¹⁶)²⁵⁵ (mod 10) ≡ 1¹²⁵ (mod 10) ≡ 1 (mod 10)
(2023³)⁷ ≡ 7⁷ (mod 10) ≡ 3 (mod 10)
2023²² ≡ (2023³)⁷.2023 (mod 10) ≡ 3.3 (mod 10) ≡ 9 (mod 10)
2023²⁰²² ≡ 2023²⁰⁰⁰.2023²⁰²² (mod 10) ≡ 1.9 (mod 10) ≡ 9 (mod 10)
Vậy chữ số tận cùng của 2023²⁰²² là 9
Câu hỏi 1: Tìm chữ số tận cùng của:
7242
<a class="btn btn-small btn-success">chữ số tận cùng là 9 </a>
Ta có:
7242 = 7240.72
= 760.4.49
= (...1).(...9)
= (...9)
Vậy chữ số tận cùng của 7242 là 9
cho A=1944\(^{2005}\)
a,tìm số dư trong phép chia A cho 7
b,tìm chữ số tận cùng của A
c,tìm 2 cs tận cùng của A
a) Dư 2
b) 4
c) chịu :>>>
Xin like nha bạn. Thx bạn
tìm chữ số tận cùng của số sau(giải tích rõ )mình cần gấp lắm đó
342^1008 ; 2^11
211=2048
Vì 2048 có chữ số tận cùng là 8
Nên 211 cũng có chữ số tận cùng là 8
3421008=342252.4=....4
211=28.23=24.2.23=...6.8=...4
Bài 4: Cho số A=2012^2013.Tìm chữ số tận cùng của A
Bài 5:Cho A=2012^2013.Tìm hai chữ số tận cùng của A
5)A=2012^2013
A=2012^2012.2012
A=2012^(4.503).2012
A=(...6).2012=....72 (các số tự nhiên có chữ số tận cùng bằng 2,4,8 khi nâng lên lũy thừa 4n (n khác 0) đều có tận cùng là 6)
Vậy 2 chữ số tận cùng của A là 72
4)
20122013=20122012.2012=(20124)503.2012=(..1)503.2012=(....1).2012=....2
=>chữ số tận cùng của 20122013 là 2
Bài 3: Tìm số trung bình cộng của các số sau:
a. 96, 121, và 144 | b. 340, 342, 344, 346 và 348 |
Bài giải
……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………..
……………………………………………………………………………………………………………………………………………………………………………………………………………….
……………………………………………………………………………………………………………………………………………………………………………………………………………….
Bài 4: Tìm 6 số lẻ liên tiếp, biết trung bình cộng của nó là 2014.
Bài giải
……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………..
……………………………………………………………………………………………………………………………………………………………………………………………………………….
……………………………………………………………………………………………………………………………………………………………………………………………………………….
Bài 3: Tìm số trung bình cộng của các số sau:
a. 96, 121, và 144 | b. 340, 342, 344, 346 và 348 |
Bài giải
……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………..
……………………………………………………………………………………………………………………………………………………………………………………………………………….
……………………………………………………………………………………………………………………………………………………………………………………………………………….
Bài 4: Tìm 6 số lẻ liên tiếp, biết trung bình cộng của nó là 2014.
Bài giải
……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………..
……………………………………………………………………………………………………………………………………………………………………………………………………………….
……………………………………………………………………………………………………………………………………………………………………………………………………………….
Bài 3: Tìm số trung bình cộng của các số sau:
a. 96, 121, và 144 | b. 340, 342, 344, 346 và 348 |
Bài giải
câu hỏi a sai
b. (340+342+344+346+348):5
=1720:5
=344
Bài 4: Tìm 6 số lẻ liên tiếp, biết trung bình cộng của nó là 2014.
Bài giải
Tổng của 6 số chẵn liên tiếp là:
2014 x 6 = 12084
Tổng của số đầu và số cuối là:
12084 : 3 = 4028
Vì hiệu của 2 số chẵn liên tiếp là 2, nên hiệu của 6 số chẵn liên tiếp là 10.
Số đầu tiên là:
( 4028 - 10 ) : 2 = 2009
Vậy 6 số đó là: 2009, 2011, 2013, 2015, 2017, 2019.
Ví dụ : tìm trung bình cộng của 2, 5,3 ta làm như sau.
(2+5+3):3
Bài 4:
Gọi 6 số lẻ liên tiếp là 2k+1;2k+3;2k+5;2k+7;2k+9;2k+11
Theo đề, ta có:
\(12k+36=12084\)
hay k=1004
Vậy: 6 số cần tìm là 2009; 2011; 2013; 2015; 2017; 2019
Cho A= 1944^2005
a) tìm dư khi chia A cho 7
b) tìm chữ số tận cùng của A
c) tìm 2 chữ số tận cùng của A