rút gọn các biểu thức sau:
(x+2)^ 2 -(2x-y).(x+2y)
bài 9 : rút gọn các biểu thức
a. A = ( 2x + y )2 - ( 2x - y ) 2
b. B = ( x - 2y )2 - 4(x - 2y )y + 4y2
a) A = [(2x + y) - (2x - y)] . [(2x +y) + (2x - y)]
b) B = [(x - 2y) - 2y]2
\(a,A=\left(2x+y\right)^2-\left(2x-y\right)^2\\ =\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\\ =2y\cdot4x\\ =8xy\\ b,B=\left(x-2y\right)^2-4y\left(x-2y\right)+4y^2\\ =x^2-4xy+4y^2-4xy+8y^2+4y^2\\ =x^2+16y^2-8xy\\ =\left(x-4y\right)^2\)
\(a,A=\left(2x+y\right)^2-\left(2x-y\right)^2\)
\(=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\)
\(=2y.4x=8xy\)
Vậy \(A=8xy\)
\(----------\)
\(b,B=\left(x-2y\right)^2-4\left(x-2y\right)y+4y^2\)
\(=\left(x-2y\right)^2-2.\left(x-2y\right).2y+\left(2y\right)^2\)
\(=\left(x-2y-2y\right)^2\)
\(=\left(x-4y\right)^2\)
Vậy \(B=\left(x-4y\right)^2\)
Rút gọn các biểu thức sau y ( 2 x - x 2 ) x ( 2 y + y 2 )
rút gọn biểu thức 2x(x-y)+3y(y-x)-2y^2-2x^2
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
Rút gọn các biểu thức sau:
a) A=(x^2 - 2xy+2y^2)(x^2+2xy+2y^2)
b) B=(2x^2+2x+1)(2x^2-2x+1)-(2x^2-1)^2
Rút gọn các biểu thức sau
A=x^2(x+y)+y^2(x+y)+2x^2y+2xy^2
B=(x-5)(x+2)+3(x-2)(x+2)-(3x-1/2)^2+5x^2
Giúp mình với
Rút gọn và tính giá trị biểu thức
(x+2y)^2-(2x-y)(x+2y) tại x =3
( x + 2y )2 - ( 2x - y ) ( x + 2y )
= ( x + 2y ) ( x + 2y - 2x + y )
= ( x + 2y ) ( 3y - x )
Tại x = 3
=> ( 3 + 2y ) ( 3y - 3 )
Theo mik là vậy nha :D
Rút gọn biểu thức
x^2(x+y)+y^2(x+y)+2x^2y+2xy^2
Trả lời:
\(x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(=x^3+x^2y+xy^2+y^3+2x^2y+2xy^2\)
\(=x^3+y^3+3x^2y+3xy^2\)
Bài 1. Rút gọn các biểu thức sau.
a) (x + 2y)(x2 - 2xy + 4y2) – (x - y)(x2 + xy + y2)
b) (x + 1)(x - 1)2 – (x + 2)(x2 - 2x + 4)
a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)
\(=x^3+8y^3-x^3+y^3\)
\(=9y^3\)
b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)
\(=x^3-x^2-x+1-x^3-8\)
\(=-x^2-x-7\)