2019(x-1) = 2020(y-1) và x+y= 4041. Với x không bằng 1 và y ko bằng 1
2019(x-1)=2020(y-1) và x+y=4041(x ,y khác 1)
Tìm x,y biết x^2018+y^2018=x^2019+y^2019=x^2020+y^2020.
Cho a+b+c=2019, 1/a + 1/b+1/c=1/2019. Tính 1/a^2019+1/b^2019+1/c^2019
Tìm x,y biết x^2-xy=6x-5y-8.
Giúp mk với, mk vã lắm rồi :-( :-(
gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
3" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
là sẽ tìm được nghiệm nguyên củaI.Trắc nghiệm(5 điểm) 1. Giá trị lớn nhất của biểu thức 2019 2 x x bằng: A.2020 B.2019 C.2018 D. 2019 2. Với x, y là số đo các góc nhọn. Chọn nội dung sai trong các câu sau: A. sin y tan y cos y B. 2 2 sin x cos y 1 C. cos x cot x sin x D. tan y.cot y 1 3. Cho
Đề lỗi font. Bạn cần chỉnh sửa lại bằng công thức toán để được hỗ trợ tốt hơn.
cho x,y >0 và 2020/x+1=2020/y và x+2y=2345.tính B=(2/3.x/y)2020+2019
a) Tính giá trị biểu thức 1/2 . x^5 . y - 3/4 . x^5 . y + x^5 . y tại x = 2 và y = -1 ( Bằng 2 cách )
b) Tính giá trị biểu thức 5 . x^10 . y^15 + 3 . x^10 . y^15 - 8 . x^10 . y^15 tại x = 2019 và y = 2020
Bạn nào làm được mình sẽ tick cho nha!
tìm x, y thỏa mãn |(x-2)^2019|+(y-1)^2020 nhỏ hơn hoặc bằng 0
\(\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\le0\)
Ta có:
\(\left\{{}\begin{matrix}\left|\left(x-2\right)^{2019}\right|\ge0\\\left(y-1\right)^{2020}\ge0\end{matrix}\right.\forall x,y.\)
\(\Rightarrow\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\ge0\) \(\forall x,y.\)
Mà \(\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\le0.\)
\(\Rightarrow\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}=0\)
\(\Rightarrow\left(x-2\right)^{2019}+\left(y-1\right)^{2020}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2019}=0\\\left(y-1\right)^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0+2\\y=0+1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{2;1\right\}.\)
Chúc bạn học tốt!
So sánh x = 20192020 + 1 / 20192019 + 1 và y = 20192019 + 2020 / 20192018 + 2020
\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)
\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x>y\)
cho x+y+z=0 và xy+yz+zx=0.Tính Q=(x-1)^2018+(y-1)^2019+(z-1)^2020
\(x+y+z=0\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz = 0)
\(\Rightarrow\)\(x=y=z=0\)
Vậy \(Q=\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}=1\)
Cho hàm số \(y=\dfrac{1}{2x^2+x-1}\). Hỏi đạo hàm cấp 2019 của hàm số bằng biểu thức nào sau đây?
A. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2019}}{\left(2x-1\right)^{2020}}\right)\)
B. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2020}}{\left(2x-1\right)^{2020}}\right)\)
C. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2}{\left(2x-1\right)^{2020}}\right)\)
D. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}+\dfrac{2}{\left(2x-1\right)^{2020}}\right)\)
\(y=\dfrac{1}{2x^2+x-1}=\dfrac{1}{\left(x+1\right)\left(2x-1\right)}=\dfrac{2}{3}.\dfrac{1}{2x-1}-\dfrac{1}{3}.\dfrac{1}{x+1}\)
\(y'=\dfrac{2}{3}.\dfrac{-2}{\left(2x-1\right)^2}-\dfrac{1}{3}.\dfrac{-1}{\left(x+1\right)^2}=\dfrac{2}{3}.\dfrac{\left(-1\right)^1.2^1.1!}{\left(2x-1\right)^2}-\dfrac{1}{3}.\dfrac{\left(-1\right)^1.1!}{\left(x+1\right)^2}\)
\(y''=\dfrac{2}{3}.\dfrac{\left(-1\right)^2.2^2.2!}{\left(2x-1\right)^3}-\dfrac{1}{3}.\dfrac{\left(-1\right)^2.2!}{\left(x+1\right)^3}\)
\(\Rightarrow y^{\left(n\right)}=\dfrac{2}{3}.\dfrac{\left(-1\right)^n.2^n.n!}{\left(2x-1\right)^{n+1}}-\dfrac{1}{3}.\dfrac{\left(-1\right)^n.n!}{\left(x+1\right)^{n+1}}\)
\(\Rightarrow y^{\left(2019\right)}=\dfrac{2}{3}.\dfrac{\left(-1\right)^{2019}.2^{2019}.2019!}{\left(2x-1\right)^{2020}}-\dfrac{1}{3}.\dfrac{\left(-1\right)^{2019}.2019!}{\left(x+1\right)^{2020}}\)
\(=\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2020}}{\left(2x-1\right)^{2020}}\right)\)