x/7=x5 và x+2y=51
bài toán áp dụng dãy tỉ số bằng nhau
bài toán áp dụng dãy tỉ số bằng nhau
5x=6y và x+y=33
\(5x=6y\Rightarrow\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{33}{11}=3\)
\(\Rightarrow x=18;y=15\)
Tìm x,y,z:(áp dụng t/c của dãy tỉ số bằng nhau)
\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{-4}\)và 3x-2y=28
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-4}\)
<=> \(\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{-3z}{12}\)
<=> 6x = 4y
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=28\\6x=4y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2y=28\\6x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-4y=56\\6x-4y=0\end{matrix}\right.\)
<=> 56 = 0 (Vô lí)
<=> x và y vô nghiệm
<=> x, y, z vô nghiệm
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-4}\)
nên \(\dfrac{3x}{6}=\dfrac{2y}{6}=\dfrac{z}{-4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x}{6}=\dfrac{2y}{6}=\dfrac{z}{-4}=\dfrac{3x-2y}{6-6}=\dfrac{28}{0}\)
=> Đề sai rồi bạn
x/y+5/7 và x+y = 4.08
Tìm x,y ( áp dụng tính chất của dãy tỉ số bằng nhau )
Ta có x/y = 5/7
=> x/5 = y/7 và x + y = 4.08
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
x/5 = y/7 = x+y/5+7 = 4.08/12 = 0.34
=> x/5 = 0.34 => x = 0.34 x 5 = 1.7
y/7 = 0.34 => y = 0.34 x 7 = 2.38
Vậy x = 1.7 ; y = 2.38
HOk tốt!!!!!!!!!!!!!
Theo bài ra ta có:\(\frac{x}{y}=\frac{5}{7}\Leftrightarrow\frac{x}{5}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{4,08}{12}=0,34\)
Do đó: x=0,34.5=1,7
y=0,34.7=2,38
Vậy x=1,7 và y=2,38
Tìm x,y,z:(áp dụng t/c của dãy tỉ số bằng nhau)
1/\(\dfrac{x}{0,3}\)=\(\dfrac{y}{0,2}\)=\(\dfrac{z}{0,1}\)và x-y=1
2/\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{-4}\)và 3x-2y=28
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{0,3}=\dfrac{y}{0.2}=\dfrac{z}{0.1}=\dfrac{x-y}{0.3-0.2}=\dfrac{1}{0.1}=10\)
Do đó: x=3; y=2; z=1
x/4=y/7 biết x×y=112(tính bằng cách áp dụng t/c dãy tỉ số bằng nhau)
Đặt: \(\dfrac{x}{4}=\dfrac{y}{7}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=4k\\y=7k\end{matrix}\right.\)
Ta có: \(xy=112\Rightarrow4k\cdot7k=112\)
\(\Rightarrow28k^2=112\)
\(\Rightarrow k^2=4\)
\(\Rightarrow\left[{}\begin{matrix}k=-2\\k=2\end{matrix}\right.\)
Với k = -2
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot-2=-8\\y=7\cdot-2=-14\end{matrix}\right.\)
Với k = 2
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=7\cdot2=14\end{matrix}\right.\)
Tìm x,y:(áp dụng t/c của dãy tỉ số bằng nhau)
\(\dfrac{2x}{3y}\)=\(\dfrac{-1}{3}\)và 2x-3y=7
\(\dfrac{2x}{3y}=-\dfrac{1}{3}\Rightarrow\dfrac{2x}{-1}=\dfrac{3y}{3}\)
áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{-1}=\dfrac{3y}{3}=\dfrac{2x-3y}{-1-3}=\dfrac{7}{-4}\)
\(\dfrac{2x}{-1}=\dfrac{7}{-4}\Rightarrow x=\dfrac{7}{8}\\ \dfrac{3y}{3}=\dfrac{7}{-4}\Rightarrow y=-\dfrac{7}{4}\)
\(\dfrac{2x}{-1}=\dfrac{7}{-4}\Rightarrow2x=\dfrac{7}{-4}.-12x=\dfrac{-7}{-4}\Rightarrow2x=\dfrac{7}{4}\Rightarrow x=\dfrac{7}{4}:2\Rightarrow x=\dfrac{7}{8}\)
\(\dfrac{3y}{3}=\dfrac{7}{-4}\Rightarrow\dfrac{3}{3}.y=\dfrac{7}{-4}\Rightarrow1.y=\dfrac{7}{4}\Rightarrow y=\dfrac{7}{4}\)
Tìm x,y,z;(áp dụng t/c của dãy tỉ số bằng nhau)
1/\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và y-z=39
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{y-z}{6-7}=\dfrac{39}{-1}=-39\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-39\right).5=-195\\y=\left(-39\right).6=-234\\z=\left(-39\right).7=-273\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{y-z}{6-7}=\dfrac{39}{-1}=-39\)
Do đó: x=-195; y=-234; z=-273
\(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{z+4}\)và x+y+z=17
giải theo cách áp dụng tính chất của dãy tỉ số bằng nhau nhé
Ta có :
x + y + z = 17
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{10}{2z+4}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{10}{2z+4}=\frac{7+3+10}{\left(2x+2\right)+\left(2y-4\right)+\left(2x+4\right)}\)
\(=\frac{20}{2.\left(x+y+z+1\right)}=\frac{10}{17+1}=\frac{5}{9}\)
\(\Rightarrow\hept{\begin{cases}2x+2=7:\frac{5}{9}=\frac{63}{5}\\2y-4=3:\frac{5}{9}=\frac{27}{5}\\z+4=5:\frac{5}{9}=9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{\frac{63}{5}-2}{2}\\y=\frac{\frac{27}{5}+4}{2}\\z=9-4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{106}{5}\\y=\frac{94}{5}\\z=5\end{cases}}\)
Nhầm xíu nhé :
Bạn làm đến cái suy ra ở ngoặc nhọn thứ nhất rồi làm tiếp như sau :
.........................................
\(\Rightarrow\hept{\begin{cases}x=\frac{\frac{63}{5}-2}{2}=\frac{63}{10}\\y=\frac{\frac{27}{5}+4}{2}=\frac{47}{10}\\z=9-4=5\end{cases}}\)
(Áp dụng t/c của dãy tỉ số bằng nhau)
1/2x=3y=4z và x-y-z=35
2/\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\):\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\)và 2x+3y-z=186
1)
Ta có:
\(2x=3y=4z\Leftrightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x-y-z}{\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}}=-420\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-420.\dfrac{1}{2}=-210\\y=-420.\dfrac{1}{3}=-140\\z=-420.\dfrac{1}{4}=-105\end{matrix}\right.\)
Vậy....
1: Ta có: 2x=3y=4z
nên \(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}\)
mà x-y-z=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x-y-z}{\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}}=\dfrac{35}{-\dfrac{1}{12}}=-420\)
Do đó: x=-210; y=-140; z=-105
2: Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\)
nên \(\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)
nên \(\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
mà 2x+3y-z=186
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
Do đó: x=45; y=60; z=84