Câu 1:Cho\(\frac{a}{b}\)=\(\frac{c}{d}\).Cm \(\frac{a^2-c^2}{b^2-d^2}\)=\(\frac{a^2+c^2}{b^2+d^2}\)
Cho a, b, c, d dương. CM:
1) \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)
3) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{a^2}\ge\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
4) \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9;a+b+c\le1\)
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)
Tương tự hai BĐT còn lại và cộng theo vế thu được:
\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)
Đẳng thức xảy ra khi a = b= c
Bài 1: Cho \(\frac{a}{b}=\frac{c}{d}\) .CM:
a) \(\frac{a^2}{a^2+b^2}=\frac{c^2}{c^2+d^2}\) b) \(\left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\)
Bài 2: Cho 3 số a,b,c\(\ne\)0, sao cho a\(^2\)=bc. CM:
a) \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\) b)\(\left(\frac{c+2019a}{a+2019b}\right)^2=\frac{c}{b}\)
Bài 4: Cho a,b,c,d khác 0 sao cho b2=ac, c2=bd.CM: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 1:
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c}\)
\(\Rightarrow\frac{b^2}{a^2}=\frac{d^2}{c^2}.\)
\(\Rightarrow\frac{b^2}{a^2}+1=\frac{d^2}{c^2}+1\)
\(\Rightarrow\frac{b^2}{a^2}+\frac{a^2}{a^2}=\frac{d^2}{c^2}+\frac{c^2}{c^2}.\)
\(\Rightarrow\frac{b^2+a^2}{a^2}=\frac{d^2+c^2}{c^2}\)
\(\Rightarrow\frac{a^2}{a^2+b^2}=\frac{c^2}{c^2+d^2}\left(đpcm\right).\)
Bài 4:
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\). Khi đó:
a)
\(\frac{a^2}{a^2+b^2}=\frac{(bt)^2}{(bt)^2+b^2}=\frac{b^2t^2}{b^2(t^2+1)}=\frac{t^2}{t^2+1}(1)\)
\(\frac{c^2}{c^2+d^2}=\frac{(dt)^2}{(dt)^2+d^2}=\frac{d^2t^2}{d^2(t^2+1)}=\frac{t^2}{t^2+1}(2)\)
Từ $(1);(2)$ suy ra đpcm.
b)
\(\left(\frac{a+c}{b+d}\right)^2=\left(\frac{bt+dt}{b+d}\right)^2=\left(\frac{t(b+d)}{b+d}\right)^2=t^2(3)\)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{(bt)^2+(dt)^2}{b^2+d^2}=\frac{t^2(b^2+d^2)}{b^2+d^2}=t^2(4)\)
Từ $(3);(4)\Rightarrow \left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}$ (đpcm)
Bài 2:
Từ $a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$
Đặt $\frac{a}{c}=\frac{b}{a}=t\Rightarrow a=ct; b=at$. Khi đó:
a)
$\frac{a^2+c^2}{b^2+a^2}=\frac{(ct)^2+c^2}{(at)^2+a^2}=\frac{c^2(t^2+1)}{a^2(t^2+1)}=\frac{c^2}{a^2}=(\frac{c}{a})^2=\frac{1}{t^2}(1)$
Và:
$\frac{c}{b}=\frac{a}{tb}=\frac{a}{t.at}=\frac{1}{t^2}(2)$
Từ $(1);(2)$ suy ra đpcm.
b)
$\left(\frac{c+2019a}{a+2019b}\right)^2=\left(\frac{c+2019a}{ct+2019at}\right)^2=\left(\frac{c+2019a}{t(c+2019a)}\right)^2=\frac{1}{t^2}(3)$
Từ $(2);(3)$ suy ra đpcm.
Cho \(\frac{a}{b}=\frac{c}{d}.CM\)
a)\(\frac{a}{a-b}=\frac{c}{c-d}\)
b)\(\frac{a}{b}=\frac{a+c}{b+d}\)
c)\(\frac{a}{3a+b}=\frac{c}{3c+d}\)
d)\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
e)\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
1/ Cho a2= bc. CM: \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) đảo ngược lại có đúng ko ?
2/ cho \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) . CM: \(\frac{a}{c}=\frac{b}{d}\)
2. ....( đầu bài)
ta có:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}=>\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
AD t/ c dãy tỉ số bằng nhau ta có:
.\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a+\left(b-b\right)}{2c+\left(d-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)
. \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2b}{2d}=\frac{b}{d}\)(2)
Từ (1) và (2) => \(\frac{a}{c}=\frac{b}{d}\)(đpcm)
,Cho a/b=c/d CMR .Các tỉ lệ thức sau bằng nhau ( giả thiết các tỉ lệ thức đều có nghĩa )
\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Còn cách CM nào khác cách này ko \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Còn nha. Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}^{\left(1\right)}\)
Lại có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}^{\left(2\right)}\)
Từ (1) và (2) => đpcm
a) Cho A= \(\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}\) CM: A< \(\frac{504}{1009}\)
b) Cho a+c= 2b và 2bd=c(b+d) (b, d không bằng 0). CM: \(\frac{a}{b}=\frac{c}{d}\)
\(a+c=2b\)
\(\Rightarrow2bd=\left(a+c\right).d=cb+cd\)
\(\Rightarrow ad+cd=cb+cd\)
\(\Rightarrow ad+cd-cd=cb\)
\(ad=cb\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Câu 1: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).
Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).
Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).
Câu 4: Cho \(a,b,c,d>0\). Chứng minh rằng:
\(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\ge\frac{a+b+c+d}{3}\).
Câu 5: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:
\(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\).
Câu 6: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:
\(\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\ge1\).
Câu 7: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Câu 8: Cho \(a_1,a_2,...,a_{n-1},a_n>0\)và \(a_1+a_2+...+a_{n-1}+a_n=n\)với \(n\)nguyên dương. Chứng minh:
\(\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_{n-1}+1}+\frac{1}{a_n+1}\ge\frac{n}{2}\).
Bài 1:Cho a,b,c,d là các số dương. Chứng minh rằng :
\(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}+\frac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\ge\frac{a+b+c+d}{4}\)
Bài 2:Cho \(a>0,b>0,c>0\).\(CM:\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 3: a) Cho x,y,>0. CMR:\(\frac{x^3}{x^2+xy+y^2}\ge\frac{2x-y}{3}\)
b) Chứng minh rằng\(\Sigma\frac{a^3}{a^2+ab+b^2}\ge\frac{a+b+c}{3}\)
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
3a biến đổi tí là xong
b tuong tự bài 1
cho \(\frac{a}{b}=\frac{c}{d}\) .CM \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2-b^2}{c^2-d^2}\) (b,c,d khác 0,c+d khác 0, c-d khác 0)
Dễ mà
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)(1)
Từ (1),
Ta có: \(\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}=\frac{a+b}{c+d}\cdot\frac{a-b}{c-d}\)(nhân mỗi vế với \(\frac{a+b}{c+d}\))
Vậy \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a+b\right)\left(a-b\right)}{\left(c+d\right)\left(c-d\right)}=\frac{a^2-b^2}{c^2-d^2}\)(đpcm)