Bài 1: Cho \(\frac{a}{b}=\frac{c}{d}\) .CM:
a) \(\frac{a^2}{a^2+b^2}=\frac{c^2}{c^2+d^2}\) b) \(\left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\)
Bài 2: Cho 3 số a,b,c\(\ne\)0, sao cho a\(^2\)=bc. CM:
a) \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\) b)\(\left(\frac{c+2019a}{a+2019b}\right)^2=\frac{c}{b}\)
Bài 4: Cho a,b,c,d khác 0 sao cho b2=ac, c2=bd.CM: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 1:
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c}\)
\(\Rightarrow\frac{b^2}{a^2}=\frac{d^2}{c^2}.\)
\(\Rightarrow\frac{b^2}{a^2}+1=\frac{d^2}{c^2}+1\)
\(\Rightarrow\frac{b^2}{a^2}+\frac{a^2}{a^2}=\frac{d^2}{c^2}+\frac{c^2}{c^2}.\)
\(\Rightarrow\frac{b^2+a^2}{a^2}=\frac{d^2+c^2}{c^2}\)
\(\Rightarrow\frac{a^2}{a^2+b^2}=\frac{c^2}{c^2+d^2}\left(đpcm\right).\)
Bài 4:
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\). Khi đó:
a)
\(\frac{a^2}{a^2+b^2}=\frac{(bt)^2}{(bt)^2+b^2}=\frac{b^2t^2}{b^2(t^2+1)}=\frac{t^2}{t^2+1}(1)\)
\(\frac{c^2}{c^2+d^2}=\frac{(dt)^2}{(dt)^2+d^2}=\frac{d^2t^2}{d^2(t^2+1)}=\frac{t^2}{t^2+1}(2)\)
Từ $(1);(2)$ suy ra đpcm.
b)
\(\left(\frac{a+c}{b+d}\right)^2=\left(\frac{bt+dt}{b+d}\right)^2=\left(\frac{t(b+d)}{b+d}\right)^2=t^2(3)\)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{(bt)^2+(dt)^2}{b^2+d^2}=\frac{t^2(b^2+d^2)}{b^2+d^2}=t^2(4)\)
Từ $(3);(4)\Rightarrow \left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}$ (đpcm)
Bài 2:
Từ $a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$
Đặt $\frac{a}{c}=\frac{b}{a}=t\Rightarrow a=ct; b=at$. Khi đó:
a)
$\frac{a^2+c^2}{b^2+a^2}=\frac{(ct)^2+c^2}{(at)^2+a^2}=\frac{c^2(t^2+1)}{a^2(t^2+1)}=\frac{c^2}{a^2}=(\frac{c}{a})^2=\frac{1}{t^2}(1)$
Và:
$\frac{c}{b}=\frac{a}{tb}=\frac{a}{t.at}=\frac{1}{t^2}(2)$
Từ $(1);(2)$ suy ra đpcm.
b)
$\left(\frac{c+2019a}{a+2019b}\right)^2=\left(\frac{c+2019a}{ct+2019at}\right)^2=\left(\frac{c+2019a}{t(c+2019a)}\right)^2=\frac{1}{t^2}(3)$
Từ $(2);(3)$ suy ra đpcm.
Bài 4:
Từ điều kiện $b^2=ac; c^2=bd\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{d}$
Đặt $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=t$
$\Rightarrow a=bt; b=ct; c=dt$. Khi đó:
$\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{(bt)^3+(ct)^3+(dt)^3}{b^3+c^3+d^3}=\frac{t^3(b^3+c^3+d^3)}{b^3+c^3+d^3}=t^3(1)$
Và:
$\frac{a}{d}=\frac{bt}{d}=\frac{ct.t}{d}=\frac{dt.t.t}{d}=t^3(2)$
Từ $(1);(2)$ ta có đpcm.