Những câu hỏi liên quan
LM
Xem chi tiết
NH
15 tháng 8 2024 lúc 13:50

a; (n + 10)(n + 15)

+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2

+ Nếu n là số lẻ ta có: n + 15 là số chẵn 

⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2 

Từ những lập luận trên ta có:

A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N

Bình luận (0)
KT
Xem chi tiết
NM
7 tháng 12 2019 lúc 9:43

a/

+ Nếu n chẵn (n+10) chẵn => n+10 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

+ Nếu n lẻ thì (n+15) chẵn => n+15 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

b/ 

n(n+1)(2n+1) chi hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n(n+1)(2n+1) chia hết cho 2

+ Nếu n lẻ => n+1 chẵn => n+1 chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2

=> n(n+1)(2n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 => n+2 chia hết cho 3 => 2(n+2)=2n+4=2n+1+3 chia hết cho 3 mà 3 chia hết cho 3 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

=> n(n+1)(2n+1) chia hết cho 3 với mọi n

=> n(n+1)(2n+1) chia hết cho 6 vơi mọi n

c/

n(2n+1)(7n+1) chia hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

+ Nếu n lẻ => 7n lẻ => 7n+1 chẵn => 7n+1 chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

=> n(2n+1)(7n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => 10(n+1)=10n+10=(7n+1)+(3n+9)=(7n+1)+3(n+3) chia hết cho 3

Mà 3(n+3) chia hết cho 3 => 7n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 chứng minh tương tự câu (b) => 2n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

=> n(2n+1)(7n+1) chia hết cho 3 với mọi n

=> n(2n1)(7n+1) chia hết cho 6 với mọi n

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
LK
27 tháng 1 2018 lúc 22:08

Câu a)

Ta có: \(n\left(n+1\right)=n^2+n\)

TH1: Khi n là số chẵn 

Khi n là số chẵn thì \(n^2\)cũng là số chẵn

Suy ra \(n^2+n\)chia hết cho 2

TH2: khi n là số lẻ

Khi n là số lẻ thì \(n^2\)cũng là số lẻ

Suy ra \(n^2+n\)chia hết cho 2

Vậy .................

Cấu dưới tương tự

Làm biếng :3

Bình luận (0)
NP
Xem chi tiết
NL
Xem chi tiết
KD
8 tháng 1 2020 lúc 13:28

Ta thấy

n(n + 1)(n + 2) là ba số tự nhiên liên tiếp

Ta có nhận xét:

Tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3

Tổng của hai số tự nhiên liên tiếp luôn chia hết cho 2

=> Tích của ba số tự nhiên liên tiếp luôn chia hết cho 1.2.3 = 6

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
BT
8 tháng 1 2020 lúc 16:49

Với n là số nguyên

+ Ta thấy: \(n\)\(n+1\) là 2 số nguyên liên tiếp

\(\rightarrow\) Có ít nhất 1 số chia hết cho 2

\(n.\left(n+1\right)⋮2\)

+ Ta thấy: \(n,n+1\)\(n+2\) là 3 số nguyên liên tiếp

\(\rightarrow\)Có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3

\(\left(2;3\right)=1\)

\(\rightarrow n.\left(n+1\right).\left(n+2\right)⋮2.3\)

hay \(n.\left(n+1\right).\left(n+2\right)⋮6\)

+ Ta thấy:\(n\)\(n+1\) là 2 số nguyên liên tiếp

\(\rightarrow\) Có ít nhất 1 số chia hết cho 2

\(\rightarrow n.\left(n+1\right).\left(2n+1\right)⋮2\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NT
16 tháng 6 2022 lúc 23:01

a: Vì n và n+1 là hai số liên tiếp

nên \(n\left(n+1\right)⋮2\)

b: Vì n;n+1;n+2 là ba số liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)

hay \(n\left(n+1\right)\left(n+2\right)⋮6\)

c: Vì n(n+1) chia hết cho 2 

nên \(n\left(n+1\right)\left(2n+1\right)⋮2\)

Bình luận (0)
NH
Xem chi tiết
LV
2 tháng 8 2017 lúc 10:23

Bài 1:

Vì 444\(⋮\)8.Nên:44...4(n chữ số 4)\(⋮\)8

Bình luận (0)
SL
Xem chi tiết
NV
Xem chi tiết