Những câu hỏi liên quan
TN
Xem chi tiết
H24
Xem chi tiết
NH
26 tháng 6 2015 lúc 20:20

1)  \(3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+1=3\left(x+\frac{1}{3}\right)^2+1\ge1\Rightarrow Min=1\Leftrightarrow x=-\frac{1}{3}\)

2) \(2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2-2xy+y^2+3xy\right)-3\left(x^2-2xy+y^2+4xy\right)=\left(x-y\right)^2\left(12xy-12xy\right)=0\)

3) đặt \(2x-1=t\Rightarrow x^2=\frac{t+1}{2}^2\Leftrightarrow\left(t+2\right)^3-4\frac{t+1}{2}^2\left(t-2\right)-5=0\Leftrightarrow\left(t+2\right)^3-\left(t+1\right)^2\left(t-2\right)-5=0\)\(\Leftrightarrow t^3+6t^2+12t+8-t^3-2t^2+t+2t^2+4t+2=0\Leftrightarrow6t^2+16t+10=0\Leftrightarrow\left(t+1\right)\left(6t+10\right)=0\)

=> t=-1 hoặc t=-10/6 \(\Leftrightarrow2x-1=-1\Leftrightarrow x=0\) hoặc \(2x-1=-\frac{10}{6}\Leftrightarrow x=-\frac{1}{3}\)

 

Bình luận (0)
TL
Xem chi tiết
NM
1 tháng 11 2021 lúc 22:20

\(22,C\\ 23,C\\ 24,Sai.hết\\ 25,C\\ 28,A\\ 29,B\)

Bình luận (0)
RH
1 tháng 11 2021 lúc 22:20

22c; 23c; 24c; 25c, 29B

Bình luận (0)
NT
1 tháng 11 2021 lúc 22:22

Câu 22: C

Câu 23: C

Bình luận (0)
H24
Xem chi tiết
NM
15 tháng 11 2021 lúc 10:28

\(PT\Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\sqrt{\dfrac{\dfrac{2x+1}{2}}{2}}=\dfrac{3}{2}\\ \Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\dfrac{1}{2}\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow2\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow\sqrt{2x+1}=\dfrac{3}{4}\\ \Leftrightarrow2x+1=\dfrac{9}{16}\\ \Leftrightarrow2x=-\dfrac{7}{16}\\ \Leftrightarrow x=-\dfrac{7}{32}\\ \Leftrightarrow a=-\dfrac{7}{32}\\ \Leftrightarrow1-36a=1+36\cdot\dfrac{7}{32}=...\)

Bình luận (4)
ML
Xem chi tiết
1A
Xem chi tiết
NH
Xem chi tiết
PD
Xem chi tiết
NT
16 tháng 3 2022 lúc 13:29

Theo bđt Cauchy schwarz dạng Engel 

\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)

Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ) 

\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)

Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
16 tháng 3 2022 lúc 13:52

\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)

\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
PD
16 tháng 3 2022 lúc 15:03

Cho mình hỏi bạn Nguyễn Huy Tú, hãy giải thích cho mình hiểu về bất đẳng thức Cauchy schawarz (Định lý, chứng minh,..). Đây là lần đầu tiên mình được nghe tên về bất đẳng thức này nên mong bạn giải thích dễ hiểu. Chúc bạn ngày một thành công hơn trong con đường học vấn của mình !

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
MN
10 tháng 2 2020 lúc 22:02

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right).\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)

\(\Leftrightarrow Q=\left(\frac{x\left(2-x\right)}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right).\frac{2+x\left(1-x\right)}{x^2}\)

\(\Leftrightarrow Q=\frac{-x\left(x-2\right)^2-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{2+x-x^2}{x^2}\)

\(\Leftrightarrow Q=\frac{x\left(x^2-4x+4\right)-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(\Leftrightarrow Q=\frac{x\left(x^2+4\right)}{2\left(x^2+4\right)}.\frac{x+1}{x^2}\)

\(\Leftrightarrow Q=\frac{x+1}{2x}\)

b) Để \(Q\inℤ\)

\(\Leftrightarrow x+1⋮2x\)

\(\Leftrightarrow2\left(x+1\right)⋮2x\)

\(\Leftrightarrow2x+2⋮2x\)

\(\Leftrightarrow2⋮2x\)

\(\Leftrightarrow2x\inƯ\left(2\right)\)

\(\Leftrightarrow2x\in\left\{\pm1;\pm2\right\}\)

\(\Leftrightarrow x\in\left\{\pm\frac{1}{2};\pm1\right\}\)

Mà \(x\inℤ\)

Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa