Những câu hỏi liên quan
LL
Xem chi tiết
TM
Xem chi tiết
NP
24 tháng 11 2015 lúc 22:29

ta cần chứng minh nó lớn hơn 1 và nhỏ hơn 2

Do a;b;c và d là các số nguyên dương => 
a + b + c < a + b + c + d 
a + b + d < a + b + c + d 
a + c + d < a + b + c + d 
b + c + d < a + b + c + d 
=> a/(a + b + c) > a/(a + b + c + d) (1) 
b/(a + b + d) > b/(a + b + c + d) (2) 
c/(b + c + d) > c/(a + b + c + d) (3) 
d/(a + c + d) > d/(a + b + c + d) (4) 
Từ (1);(2);(3) và (4) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1 
=> B > 1 (*) 

Ta có: (a + b + c)(a + d) - a(a + b + c + d) 
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad) 
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad 
= bd + cd 
Do a;b;c và d là số nguyên dương 
=> bd + cd > 0 
=> (a + b + c)(a + d) - a(a + b + c + d) > 0 
=> (a + b + c)(a + d) > a(a + b + c + d) 
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5) 
Chứng minh tương tự ta được: 
(b + c)/(a + b + c + d) > b/(a + b + d) (6) 
(a + c)/(a + b + c + d) > c/(b + c + d) (7) 
(b + d)/(a + b + c + d) > d/(a + c + d) (8) 
Cộng vế với vế của (5);(6);(7) và (8) ta được: 
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) 
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B 
=> 2(a + b + c + d)/(a + b + c + d) > B 
=> 2 > B (*)(*) 
Từ (*) và (*)(*) 
=> 1 < B < 2 
=> B không phải là số nguyên

Bình luận (0)
LK
13 tháng 4 2016 lúc 20:12

Ta có: a/a+b <a/a+b+c    (1)

           b/b+c <b/a+b+c     (2) 

           c/c+a <c/a+b+c      (3)

Từ (1),(2),(3)  =>    a/a+b    +   b/b+c   +    c/c+a    >     a/a+b+c  +   b/a+b+c   +    c/a+b+c

                                                                                       = a+b+c/a+b+c

                                                                                       =1

VẬY : M>1

Ta có :

              a/a+b    <   a+c/a+b+c     (1)

              b/b+c    <   b+a/a+b+c     (2)

              c/c+a     <   c+b/a+b+c     (3)

Từ (1),(2),(3) =>  a/a+b    +   b/b+c   +    c/c+a    <     a+c/a+b+c    +      b+a/a+b+c      +    c+a/a+b+c 

                                                                                   =     2.(a+b+c)/a+b+c

                                                                                   =     2

=>          1<M<2          

=>          M không phải là số nguyên

Bình luận (0)
DT
18 tháng 12 2017 lúc 6:15
ta có công thức.Nếu a,b,c là các số nguyên dương thì a/ba/a+b
Bình luận (0)
NA
Xem chi tiết
NH
18 tháng 2 2017 lúc 23:25

Chứng minh là sai đề đấy

Bình luận (0)
NH
21 tháng 2 2017 lúc 21:07

Phải là tìm a,b,c mới đúng 

Bình luận (0)
H24
Xem chi tiết
H24
31 tháng 7 2021 lúc 20:18

Giúp mình với ạ TT!!!

Bình luận (0)
NT
Xem chi tiết
NM
16 tháng 2 2016 lúc 19:13

M=a/a+b+b/b+c+c/c+a vs a,b,c lớn hơn 0

M=1+b+1+c+1+a=3+a,b,c

M là số nguyên

Bình luận (0)
HP
16 tháng 2 2016 lúc 19:15

Ta có a/b+c+b/a+c+c/a+b > a/a+b+c+b/b+c+a+c/b+c+a=a+b+c/a+b+c=1

=>M>1

Lại có M=(1-b/a+b)+(1- c/b+c)+(1-c/a+c)<3-(b/a+b+c+c/b+c+a+a/c+a+b)=3-1=2

=>M < 2

 do đo 1<M<2=>đpcm

Bình luận (0)
HP
16 tháng 2 2016 lúc 19:17

Bn vào đây:http://olm.vn/hoi-dap/question/431454.html

Bình luận (0)
HT
Xem chi tiết
VA
Xem chi tiết
VD
18 tháng 1 2017 lúc 17:37

Cho x,y,z là các số nguyên tố khác 2 và các số thực a,b,c thỏa mãn dãy tỉ số bằng nhau a-b/x=b-c/y=a-c/z.CMR a=b=c

Bình luận (0)

Dễ thế mà chẳng ai làm được..

Bình luận (0)
 Khách vãng lai đã xóa
KD
Xem chi tiết
TM
Xem chi tiết
LV
4 tháng 5 2020 lúc 9:14

đề em viết chưa đủ dữ kiện

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết